Skip to main content
Log in

On the removal of singularities of the Orlicz–Sobolev classes

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the local behavior of closed-open discrete mappings of the Orlicz–Sobolev classes in ℝn ; n ≥ 3: It is proved that the indicated mappings have continuous extensions to an isolated boundary point x 0 of a domain D/{x 0}, whenever its inner dilatation of order p ∈ (n − 1; n] has FMO (finite mean oscillation) at this point, and, in addition, the limit sets of f at x 0 and on ∂D are disjoint. Another sufficient condition for the possibility of a continuous extension can be formulated as a condition of divergence of a certain integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Iwaniec and G. Martin, Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford, 2001.

    Google Scholar 

  2. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer Science + Business Media, New York, 2009.

    MATH  Google Scholar 

  3. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. d’Anal. Math., 93, 215–236 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Ya. Gutlyanskii, V. I. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: A Geometric Approach, New York, Springer, 2012.

    Book  MATH  Google Scholar 

  5. V. Ya. Gutlyanskii and A. Golberg, “On Lipschitz continuity of quasiconformal mappings in space,” J. d’ Anal. Math., 109, 233–251 (2009).

  6. A. Golberg and R. Salimov, “Topological mappings of integrally bounded p-moduli,”Ann. Univ. Buchar. Math. Ser., 3(LXI), No. 1, 49–66 (2012).

    MathSciNet  MATH  Google Scholar 

  7. R. R. Salimov, “On ring Q-mappings relative to a nonconformal modulus,” Dal’nevost. Mat. Zh., 14, No. 2, 257–269 (2014).

    MathSciNet  MATH  Google Scholar 

  8. M. Vuorinen, “Exceptional sets and boundary behavior of quasiregular mappings in n-space,” Ann. Acad. Sci. Fenn. Ser. A 1. Math. Dissert., 11, 1–44 (1976).

    MathSciNet  MATH  Google Scholar 

  9. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost’yanov, “To the theory of the Orlicz–Sobolev classes,” Alg. Analiz, 25, No. 6, 50–102 (2013).

    MathSciNet  MATH  Google Scholar 

  10. A. P. Calderón, “On the differentiability of absolutely continuous functions,” Riv. Math. Univ. Parma, 2, 203–213 (1951).

    MathSciNet  MATH  Google Scholar 

  11. L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.

    MATH  Google Scholar 

  12. B. Fuglede, “Extremal length and functional completion,” Acta Math., 98, 171–219 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  13. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Rickman, Quasiregular Mappings, Springer, Berlin, 1993.

    Book  MATH  Google Scholar 

  15. W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc., 126, No. 3, 460–473 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  16. W. P. Ziemer, “Extremal length and p-capacity,” Michigan Math. J., 16, 43–51 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. A. Shlyk, “On the equality of a p-capacitance and p-modulus,” Sib. Mat. Zh., 34, No. 6, 216–221 (1993).

    Article  Google Scholar 

  18. H. Federer, Geometric Measure Theory, Springer, Berlin, 1996.

    Book  MATH  Google Scholar 

  19. Yu. G. Reshetnyak, Spatial Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk, 1982.

    MATH  Google Scholar 

  20. D. Kovtonuyk and V. Ryazanov, “New modulus estimates in Orlicz-Sobolev classes,” Ann. Univ. Bucharest. Math. Ser., 5(LXIII), 131–135 (2014).

    MathSciNet  MATH  Google Scholar 

  21. V. G. Maz’ya, Sobolev Spaces, Leningrad Univ., Leningrad, 1985 [in Russian].

    MATH  Google Scholar 

  22. O. Martio and S. Rickman, Väisälä J., “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A1, 465, 1–13 (1970).

    MathSciNet  MATH  Google Scholar 

  23. E. A. Sevost’yanov, “On some properties of generalized quasiisometries with unbounded characteristic,” Ukr. Mat. Zh., 63, No. 3, 385–398 (2011).

    MathSciNet  MATH  Google Scholar 

  24. D. A. Kovtonyuk and V. I. Ryazanov, “To the theory of lower Q-homeomorphisms,” Ukr. Mat. Vest., 5, No. 2, 159–184 (2008).

    MathSciNet  Google Scholar 

  25. J. Väisälä, Lectures on n–Dimensional Quasiconformal Mappings, Springer, Berlin, 1971.

    Book  MATH  Google Scholar 

  26. O. Martio and U. Srebro, “Periodic quasimeromorphic mappings,” J. Analyse Math., 28, 20–40 (1975).

    Article  MATH  Google Scholar 

  27. T. V. Lomako, “On the extension of some generalizations of quasiconformal mappings to a boundary,” Ukr. Mat. Zh., 61, No. 10, 1329–1337 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Stoilow, Lecons sur les Principes Topologiques de la Théorie des Fonctions Analytiques, Gauthier-Villars, Paris, 1938.

    MATH  Google Scholar 

  29. A. Ignat’ev and V. Ryazanov, “A finite mean oscillation in the theory of mappings,” Ukr. Mat. Vest., 2, No. 3, 395–417 (2005).

    MATH  Google Scholar 

  30. V. I. Ryazanov and E. A. Sevost’yanov, “Equipotentially continuous classes of ring Q-homeomorphisms,” Sib. Mat. Zh., 48, No. 6, 1361–1376 (2007).

    Article  MATH  Google Scholar 

  31. R. R. Salimov, “On the estimate of a measure of the image of a ball,” Sib. Mat. Zh., 53, No. 4, 920–930 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny A. Sevost’yanov.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 13, No. 3, pp. 324–349 July–September, 2016.

Translated from Russian by V.V. Kukhtin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevost’yanov, E.A., Salimov, R.R. & Petrov, E.A. On the removal of singularities of the Orlicz–Sobolev classes. J Math Sci 222, 723–740 (2017). https://doi.org/10.1007/s10958-017-3327-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3327-2

Keywords

Navigation