Advertisement

Journal of Mathematical Sciences

, Volume 221, Issue 4, pp 530–552 | Cite as

Statistical Decomposition of Volatility

  • V.Yu. KorolevEmail author
Article

In this paper we propose a new approach to evaluating and analyzing the volatility of financial indices, in particular, stock prices. This approach is based on a multidimensional interpretation of the volatility of one-dimensional processes. The foundation of this approach is a model based on the limit theorems for compound doubly stochastic Poisson processes, in which the distributions of the increments of financial index logarithms are represented in the form of mixtures of normal laws.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Alexandrov (ed.), English-Russian Dictionary of Mathematical Terms, Mir, Moscow (1994).Google Scholar
  2. 2.
    K. A. Borovkov, English–Russian, Russian–English Dictionary of Probability Theory, Mathematical Statistics and Combinatorics, SIAM, Philadelphia (1994).Google Scholar
  3. 3.
    V. M. Zolotarev, One-Dimensional Stable Distributions [in Russian], Nauka, Moscow (1983).zbMATHGoogle Scholar
  4. 4.
    V.Yu. Korolev, “Construction of models of stock price distributions with the use of asymptotic theory of random summation,” Rev. Appl. Ind. Math., 4, No. 1, 86–102 (1997).Google Scholar
  5. 5.
    V.Yu. Korolev, “Asymptotic properties of extremums of generalized Cox processes and their application to the problems of financial mathematics,” Theor. Probab. Appl., 45, No. 1, 182–194 (2000).Google Scholar
  6. 6.
    V.Yu. Korolev, Mixed Gaussian Models of Real Processes [in Russian], MAX-Press, Moscow (2004).zbMATHGoogle Scholar
  7. 7.
    B. Mandelbrot, Fractales, Hasard et Finance, Flammarion, Paris (1997).Google Scholar
  8. 8.
    V.K. Muller, English-Russian Dictionary, Soviet Encyclopaedia, Moscow (1967).Google Scholar
  9. 9.
    V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin–New York (1975).CrossRefzbMATHGoogle Scholar
  10. 10.
    W. Hengartner and R. Teodorescu, Concentration Functions, Academic Press, New York (1973).zbMATHGoogle Scholar
  11. 11.
    A. N. Shiryaev, Essentials of Stochastic Finance, FAZIS, Moscow (1998).Google Scholar
  12. 12.
    V. Akgiray and G. G. Booth, “Compound distribution models of stock returns: an empirical comparison,” J. Fin. Res., 10, 269–280 (1987).Google Scholar
  13. 13.
    S. Alizadeh, M. Brandt, and F. Diebold, “Range-based estimation of stochastic volatility models,” J. Fin., 55, 1047–1091 (2002).CrossRefGoogle Scholar
  14. 14.
    T. Andersen, “Return volatility and trading volume: an information flow interpretation of stochastic volatility,” J. Fin., 51, No. 1, 169–204 (1996).CrossRefGoogle Scholar
  15. 15.
    T. Bali, N. Cakici, X. Yan, and Z. Zhang, “Does idiosyncratic risk really matter?,” J. Fin., 60, No. 2, 905–929 (2005).CrossRefGoogle Scholar
  16. 16.
    V. Bening and V. Korolev, Generalized Poisson Models and Their Applications in Insurance and Finance, VSP, Utrecht (2002).Google Scholar
  17. 17.
    R. Blattberg and N. Gonedes, “A comparison of the stable and Student distributions as statistical models of stock prices,” J. Bus., 47, 244–250 (1974).CrossRefGoogle Scholar
  18. 18.
    R.P. Boas (ed.), A. J. Lohwater’s Russian-English Dictionary of the Mathematical Sciences, American Mathematical Society, Providence (1990).Google Scholar
  19. 19.
    J. Y. Campbell, “A variance decomposition for stock returns,” Econ. J., 101, 157–179 (1991).CrossRefGoogle Scholar
  20. 20.
    J. Y. Campbell, A. Lo, and C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, Princeton (1997).Google Scholar
  21. 21.
    J. Y. Campbell and R. Shiller, “The dividend-price ratio and expectation of future dividends and discount factors,” Rev. Fin. Stud., 1, 195–228 (1988).CrossRefGoogle Scholar
  22. 22.
    J. Y. Campbell, M. Lettau, B. G. Malkiel, and Y. Xu “Yave individual stocks become more volatile? An empirical exploration of idiosyncratic risk,” J. Fin., 56, No. 1, 1–43 (2001).CrossRefGoogle Scholar
  23. 23.
    M. Chernov, R. Gallant, E. Ghysels, and G. Tauchen, “Alternative models for stock price dynamics,” J. Econometrics, 116, 225–257 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Z. Ding and C. Granger, “Modeling volatility persistence of speculative returns: A new approach,” J. Econometrics, 73, 185–215 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    R. F. Engle, E. Ghysels, and B. Sohn, On the Economic Sources of Stock Market Volatility, New York University, New York (2006).Google Scholar
  26. 26.
    R. F. Engle, G. Lee, “A permanent and transitory component model of stock return volatility,” in: Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W. F. Granger, R. Engle and H. White (eds.), Oxford University Press, Oxford (1999), pp. 475–497.Google Scholar
  27. 27.
    R. F. Engle and V.K. Ng, “Measuring and testing the impact of news on volatility,” J. Finance, 48, No. 5, 1749–1778 (1993).CrossRefGoogle Scholar
  28. 28.
    R. F. Engle, M. E. Sokalska, and A. Chanda, “High frequency multiplicative component GARCH,” Stern School of Business Working Paper, No. Sc-CFE-05–05 (2005).Google Scholar
  29. 29.
    E. Fama, “The behavior of stock market prices,” J. Bus., 38, 34–105 (1965).CrossRefGoogle Scholar
  30. 30.
    A. Frazzinia and I. Marsh, Idiosyncratic Volatility in the US and UK Equity Markets, Working Paper, Yale University, SSRN-id: 571067 (2003).Google Scholar
  31. 31.
    A. R. Gallant, C.-T. Hsu, and G. Tauchen, “Using daily range data to calibrate volatility diffusion and extract the forward integrated variance,” Rev. Econ. Stat., 81, 617–631 (1999).CrossRefGoogle Scholar
  32. 32.
    J.-M. Gaspar and M. Massa, Idiosyncratic Volatility and Product Market Competition, Discussion Paper 4812, Centre for Economic Policy Research, London (2004).Google Scholar
  33. 33.
    A. Goyal and Santa-P. Clara “Idiosyncratic risk matters!,” J. Fin., 58, 975–1007 (2003).Google Scholar
  34. 34.
    H. Guo and R. Savickas, Aggregate Idiosyncratic Volatility in G7 Countries, Working Paper, Federal Reserve Bank of St. Louis and George Washington University, SSRN-id: 615242 (2005).Google Scholar
  35. 35.
    J.C. Hull, Options, Futures and Other Derivative Securities, Prentice–Hall, New Jersey (2003).Google Scholar
  36. 36.
    M. G. Kendall, “The analysis of economic time series: Part I, Prices,” J. Roy. Stat. Soc., 96, 11–25 (1953).CrossRefGoogle Scholar
  37. 37.
    J. M. Maheu and T. H. McCurdy, “News arrival, jump dynamics and volatility components for individual stock returns,” J. Fin., 59, No. 2, 755–793 (2004).CrossRefGoogle Scholar
  38. 38.
    D. G. Malkiel and Y. Xu, “Investigating the behavior of idiosyncratic volatility,” J. Bus., 76, 613–644 (2002).Google Scholar
  39. 39.
    B. B. Mandelbrot, “The variation of certain speculative prices,” J. Bus., 36, 394–419 (1963).CrossRefGoogle Scholar
  40. 40.
    B. B. Mandelbrot, “The variation of some other speculative prices,” J. Bus., 40, 393–413 (1967).CrossRefGoogle Scholar
  41. 41.
    R. Metzler, E. Barkai, and J. Klafter, “Anomalous transport in disordered systems under the influence of external fields,” Physica A, 266, 343–350 (1999).CrossRefGoogle Scholar
  42. 42.
    Random House Webster’s Concise Dictionary, Random House, New York (1993).Google Scholar
  43. 43.
    S. A. Ross, “Information and volatility: the no-arbitrage martingale approach to timing and resolution irrelevancy,” J. Fin., 44, No. 1, 1–17 (1989).CrossRefGoogle Scholar
  44. 44.
    W. R. Schneider, “Stable distributions: Fox function representation and generalization,” in: Stochastic Processes in Classical and Quantum Systems, S. Albeverio, G. Casati, D. Merlini (eds), Springer, Berlin (1986), pp. 497–511.CrossRefGoogle Scholar
  45. 45.
    V. V. Uchaikin and V.M. Zolotarev, Chance and Stability: Stable Distributions and their Applications, VSP, Utrecht (1999).Google Scholar
  46. 46.
    S. Wei and C. Zhang, “Idiosyncratic risk does not matter: A re-examination of the relationship between average returns and average volatilities,” J. Banking Fin., 29, 603–621 (2005).CrossRefGoogle Scholar
  47. 47.
    S. Wei and C. Zhang, “Why did individual stocks become more volatile?” J. Bus., 79, 259–292 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Lomonosov Moscow State University, Faculty of Computational Mathematics and CyberneticsMoscowRussia
  2. 2.Institute of Informatics Problems of FRC IC RASMoscowRussia

Personalised recommendations