Skip to main content

A Note on the Kernel of Group Homomorphism from the Weil Descent Method

Abstract

In this article, we demonstrate some properties of the kernel of homomorphism, obtained from the Weil descent attack on the elliptic curves over a field of characteristic 2, in particular, its nondegeneracy under some conditions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography, London Math. Soc. Lect. Note Ser., Vol. 265, Cambridge Univ. Press, Cambridge (1999).

  2. 2.

    Z. I. Borevich and I R. Shafarevich, Number Theory [in Russian], Nauka, Moscow (1985).

  3. 3.

    J. W. S. Cassels, “Diophantine equations with special reference to elliptic curves,” J. London Math. Soc., 41, 193–291 (1966).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    S. D. Galbraith Weil Descent of Jacobians, https://www.math.auckland.ac.nz/~sgal018/dec.pdf (2011).

  5. 5.

    S. D. Galbraith, F. Hess, and N. P. Smart, “Extending the GHS Weil descent attack,” in: Advances in Cryptology — EUROCRYPT 2002, Lect. Notes Comp. Sci., Vol. 2332, Springer, Berlin (2002), pp. 29–44.

  6. 6.

    S. D. Galbraith and N. P. Smart, “A cryptographic application of Weil descent,” in: Cryptography and Coding (7th IMA Int. Conf. Cirencester, UK, December 20–22, 1999. Proc.), Lect. Notes Comp. Sci., Vol. 1746, Springer, Berlin (1999), pp. 191–200; the full version of the paper is HP Labs Technical Report, HPL-1999-70.

  7. 7.

    P. Gaudry, F. Hess, and N. P. Smart, Constructive and Destructive Facets of Weil Descent on Elliptic Curves, Hewlett Packard Lab. Tech. Rep. (2000), http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/papers.html.

  8. 8.

    K. Karabina, A. Menezes, C. Pomerance, and I. E. Shparlinski, “On the asymptotic effectiveness of Weil descent attacks,” J. Math. Cryptology, 4, No. 2, 175–191 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    N. Koblitz, Algebraic Aspects of Cryptography, Springer, Berlin (1998).

    Book  MATH  Google Scholar 

  10. 10.

    S. Lang, Algebraic numbers [Russian translation], Mir, Moscow (1966).

  11. 11.

    A. Menezes and M. Qu, “Analysis of the Weil descent attack of Gaudry, Hess and Smart,” in: Topics in Cryptology — CT-RSA 2001, Lect. Notes Comp. Sci., Vol. 2020, Springer, Berlin (2001), pp. 308–318.

  12. 12.

    C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Amer. Math. Soc. (1951).

  13. 13.

    H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin (1998).

    MATH  Google Scholar 

  14. 14.

    H. Weber, Lehrbuch der Algebra, Vols. I–III, New York, Chelsea Publ. Comp. (1902).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Cherepniov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 6, pp. 213–224, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherepniov, M.A. A Note on the Kernel of Group Homomorphism from the Weil Descent Method. J Math Sci 221, 452–460 (2017). https://doi.org/10.1007/s10958-017-3237-3

Download citation