Skip to main content

Postclassical Families of Functions Proper for Descriptive and Prescriptive Spaces

Abstract

The classics of function theory (E. Borel, H. Lebesgue, R. Baire, W. H. Young, F. Hausdorff, et al.) have laid down the foundation of the classical descriptive theory of functions. Its initial notions are the notions of a descriptive space and of a measurable function on it. Measurable functions were defined in the classical preimage language. However, a specific range of tasks in theory of functions, measure theory, and integration theory emergent on this base necessitates the usage of the entirely different postclassical cover language, equivalent to the preimage language in the classical case. By means of the cover language, the general notions of a prescriptive space and distributable and uniform functions on it are introduced in this paper and their basic properties are studied.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Baire, “Sur les fonctions de variables réelles,” Ann. Mat. Pura Appl. Ser. IIIa, 3, 1–122 (1899).

    Article  MATH  Google Scholar 

  2. 2.

    R. Baire, Leçons sur les fonctions discontinues, Gauthier-Villars, Paris (1905).

    MATH  Google Scholar 

  3. 3.

    E. Borel, Leçons sur la théorie des fonctions, Gauthier-Villars, Paris (1898).

    Google Scholar 

  4. 4.

    E. Borel, Leçons sur les fonctions de variables réelles, Gauthier-Villars, Paris (1905).

    MATH  Google Scholar 

  5. 5.

    N. T. Fine, L. Gillman, and J. Lambek, Rings of Quotients of Rings of Functions, McGill Univ. Press, Montreal (1965).

    MATH  Google Scholar 

  6. 6.

    F. Hausdorff, “¨Uber halbstetige Funktionen und deren Verallgemeinerung,” Math. Z., 4, 292–309 (1915).

    MATH  Google Scholar 

  7. 7.

    F. Hausdorff, Set Theory, Chelsea Publ., New York (1962).

    MATH  Google Scholar 

  8. 8.

    H. Lebesgue, “Integral, longeur, aire,” Ann. Math. (3), 7 231–359 (1902).

  9. 9.

    H. Lebesgue, “Sur les séries triginométriques,” Ann. Sci. École Norm. Sup. (3), 20, 453–485 (1903).

  10. 10.

    H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives, Gauthier-Villars, Paris (1904).

    MATH  Google Scholar 

  11. 11.

    A. V. Mikhalev, A. A. Seredinskii, and V. K. Zakharov, “Characterization of the space of Riemann integrable functions by means of cuts of the space of continuous functions. II,” Moscow Univ. Math. Bull., 63, No. 5, 183–192 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    G. Regoli, “Some characterization of sets of measurable functions,” Am. Math. Month., 84, No. 6, 455–458 (1977).

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Z. Semadeni, Banach Spaces of Continuous Functions, Mon. Mat., Vol. 55, PWA, Warszawa (1971).

  14. 14.

    W. Sierpiński, “Sur les fonctions développables en séries absolument convergentes de fonctions continues,” Fund. Math., 2, 15–27 (1921).

    MATH  Google Scholar 

  15. 15.

    M. N. Stone, “Applications of the theory of Boolean rings to general topology,” Trans. Am Math. Soc., 41, 375–481 (1937).

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    W. H. Young, “On upper and lower integration,” Proc. London Math. Soc. Ser. 2, 2, 52–66 (1905).

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    W. H. Young, “A new method in the theory of integration,” Proc. London Math. Soc. Ser. 2, 9, 15–50 (1911).

    MathSciNet  Article  Google Scholar 

  18. 18.

    V. K. Zakharov, “Functional characterization of the absolute, vector lattices of functions with the Baire property and of quasinormal functions and modules of particular continuous functions,” Trans. Moscow Math. Soc., No. 1, 69–105 (1984).

  19. 19.

    V. K. Zakharov, “Alexandrovian cover and Sierpińskian extension,” Stud. Sci. Math. Hungar., 24, No. 2-3, 93–117 (1989).

    MATH  Google Scholar 

  20. 20.

    V. K. Zakharov, “Connections between the Lebesgue extension and the Borel first class extension,

  21. 21.

    and between the preimages corresponding to them,” Math. USSR Izv., 37, No. 2, 273–302 (1991).

  22. 22.

    V. K. Zakharov, “Extensions of the ring of continuous functions generated by regular, countably-divisible, complete rings of quotients, and their corresponding pre-images,” Izv. Math., 59, No. 4, 677–720 (1995).

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    V. K. Zakharov, “Relationships between the Riemann extension and the classical ring of quotients and between the Semadeni preimage and the sequential absolute,” Trans. Moscow Math. Soc., 57, 223–243 (1996).

    MATH  Google Scholar 

  24. 24.

    V. K. Zakharov, “New classes of functions related to general families of sets,” Dokl. Math., 73, No. 2, 197–201 (2006).

    Article  MATH  Google Scholar 

  25. 25.

    V. K. Zakharov, “Hausdorff theorems on measurable functions and a new class of uniform functions,” Moscow Univ. Math. Bull., 63, No. 1, 1–6 (2008).

    MathSciNet  MATH  Google Scholar 

  26. 26.

    V. K. Zakharov and A. V. Mikhalev, “Integral representation for Radon measures on an arbitrary Hausdorff space,” Fundam. Prikl. Mat., 3, No. 4, 1135–1172 (1997).

    MathSciNet  MATH  Google Scholar 

  27. 27.

    V. K. Zakharov and A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space,” Izv. Math., 63, No. 5, 881–921 (1999).

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    V. K. Zakharov and A. V. Mikhalev, “Connections between the integral Radon representations for locally compact and Hausdorff spaces,” Fundam. Prikl. Mat., 7, No. 1, 33–46 (2001).

    MathSciNet  MATH  Google Scholar 

  29. 29.

    V. K. Zakharov and A. V. Mikhalev, “The problem of the general Radon representation for an arbitrary Hausdorff space. II,” Izv. Math., 66, No. 6, 1087–1101 (2002).

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Riesz–Radon–Fréchet problem of characterization of integrals,” Russ. Math. Surv., 65, No. 4, 741–765 (2010).

    Article  MATH  Google Scholar 

  31. 31.

    V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Characterization of Radon integrals as linear functionals,” J. Math. Sci., 85, No. 2, 233–281 (2012).

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    V. K. Zakharov and T. V. Rodionov, “A class of uniform functions and its relationship with the class of measurable functions,” Math. Notes, 84, No. 6, 756–770 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    V. K. Zakharov and T. V. Rodionov, “Naturalness of the class of Lebesgue–Borel–Hausdorff measurable functions,” Math. Notes, 95, No. 4, 500–508 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    V. K. Zakharov and A. A. Seredinskii, “A new characterization of Riemann-integrable functions,” J. Math. Sci., 139, No. 4, 6708–6714 (2006).

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. K. Zakharov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 6, pp. 77–113, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zakharov, V.K., Mikhalev, A.V. & Rodionov, T.V. Postclassical Families of Functions Proper for Descriptive and Prescriptive Spaces. J Math Sci 221, 360–383 (2017). https://doi.org/10.1007/s10958-017-3231-9

Download citation