Skip to main content
Log in

Typicality of Chaotic Fractal Behavior of Integral Vortices in Hamiltonian Systems with Discontinuous Right Hand Side

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider linear-quadratic deterministic optimal control problems where the controls take values in a two-dimensional simplex. The phase portrait of the optimal synthesis contains second-order singular extremals and exhibits modes of infinite accumulations of switchings in a finite time, so-called chattering. We prove the presence of an entirely new phenomenon, namely, the chaotic behavior of bounded pieces of optimal trajectories. We find the hyperbolic domains in the neighborhood of a homoclinic point and estimate the corresponding contraction-extension coefficients. This gives us a possibility of calculating the entropy and the Hausdorff dimension of the nonwandering set, which appears to have a Cantor-like structure as in Smale’s horseshoe. The dynamics of the system is described by a topological Markov chain. In the second part it is shown that this behavior is generic for piecewise smooth Hamiltonian systems in the vicinity of a junction of three discontinuity hyper-surface strata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Gamkrelidze and A. A. Agrachev, “A second order optimality principle for a time-optimal problem,” Math. USSR-Sb., 29, No. 4, 547–576 (1976).

    Article  MATH  Google Scholar 

  2. A. T. Fomenko and A. S. Mishchenko, “Generalized Liouville method of integration of Hamiltonian systems,” Funct. Anal. Appl., 12, No. 2, 113–121 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York (1991).

    Google Scholar 

  4. A. V. Dmitruk, “Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I. A decoding theorem,” Math. USSR-Izv., 28, No. 2, 275–303 (1987).

    Article  MATH  Google Scholar 

  5. A. V. Dmitruk, “Quadratic sufficient conditions for the minimality of abnormal sub-riemannian geodesics,” J. Math. Sci., 104, No. 1, 779–829 (2001).

    Article  MATH  Google Scholar 

  6. K. Falconer, Fractal Geometry, Math. Found. Appl., Wiley, Chichester (2003).

  7. A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side [in Russian], Nauka, Moscow (1985).

    MATH  Google Scholar 

  8. A. T. Fuller, “Dimensional properties of optimal and sub-optimal nonlinear control systems,” J. Franklin Inst., 289, 379–393 (1970).

    Article  MATH  Google Scholar 

  9. R. Hildebrand, L. V. Lokutsievskii, and M. I. Zelikin, “Generic fractal structure of finite parts of trajectories of piecewise smooth Hamiltonian systems,” Russ. J. Math. Phys., 20, No. 1, 25–32 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge (1996).

  11. H. J. Kelley, R. E. Kopp, and H. G. Moyer, “Singular extremals,” in: Topics in Optimization, Academic Press, New York (1967), pp. 63–101.

  12. A. J. Krener, “The high order maximal principle and its application to singular extremals,” SIAM J. Control Optim., 15, No. 2, 256–293 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Kupka, “Fuller’s phenomena,” in: Progress in Systems Control Theory, Birkhäuser, Boston (1990), pp. 129–142.

  14. R. M. Lewis, “Definitions of order and junction condition in singular control problems,” SIAM J. Control Optim., 18, No. 1, 21–32 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. V. Lokutsievskii, “The Hamiltonian property of the flow of singular trajectories,” Sb. Math., 205, No. 3, 432–458 (2014).

    Article  MathSciNet  Google Scholar 

  16. L. V. Lokutsievskii, “Singular regimes in controlled systems with multidimensional control in a polyhedron,” Izv. Ross. Akad. Nauk Ser. Mat., 78, No. 5, 1006–1027 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. V. Lokutsievskii, M. I. Zelikin, and R. Hildebrand, “Fractal structure of hyperbolic Lipschitzian dynamical systems,” Russ. J. Math. Phys., 19, No. 1, 27–44 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. V. Lokutsievskii, “Generic structure of the Lagrangian manifold in chattering problems,” Sb. Math., 205, No. 3, 432–458 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. V. Lokutsievskii, M. I. Zelikin, and D. D. Kiselev, “Optimal control and Galois theory,” Sb. Math., 204, No. 11, 1624–1638 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Marchal, “Chattering arcs and chattering controls,” J. Optim. Theory App., 11, No. 5, 441–468 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. P. McDannel and W. F. Powers, “Necessary conditions for joining optimal singular and nonsingular subarcs,” SIAM J. Control Optim., 9, 161–173 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. A. Milyutin, A. E. Iliutovich, N. P. Osmolovkii, and S. V. Chukanov, Optimal Control in Linear Systems [in Russian], Nauka, Moscow (1993).

    Google Scholar 

  23. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, and E. F. Mishechenko, The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York–London (1962).

    Google Scholar 

  24. O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Springer-Verlag (1975).

  25. M. I. Zelikin and V. F. Borisov, “Singular optimal regimes in problems of mathematical economics,” J. Math. Sci., 130, No. 1, 4409–4570 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Birkhäuser, Boston (1994).

  27. M. I. Zelikin, L. V. Lokutsievskii, and R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control,” Proc. Steklov Inst. Math., 277, 67–83 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. I. Zelikin, L. V. Lokutsievskii, and R. Hildebrand, “Stochastic dynamics of lie algebras of Poisson brackets in neighborhoods of nonsmoothness points of Hamiltonians,” Dokl. Math., 87, No. 3, 259–263 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. I. Zelikin, N. B. Melnikov, and R. Hildebrand, “Topological structure of a typical fiber of optimal synthesis for chattering problems,” Proc. Steklov Inst. Math., 233:, 116–142 (2001).

    MATH  Google Scholar 

  30. L. F. Zelikina, M. I. Zelikin, and K. V. Hlustov, “Singular stratified manifolds for involutive control systems,” Differ. Equ., 37, No. 9, 1161–1167 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Zelikin.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 56, Dynamical Systems and Optimal Control, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelikin, M.I., Lokutsievskii, L.V. & Hildebrand, R. Typicality of Chaotic Fractal Behavior of Integral Vortices in Hamiltonian Systems with Discontinuous Right Hand Side. J Math Sci 221, 1–136 (2017). https://doi.org/10.1007/s10958-017-3221-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3221-y

Navigation