Skip to main content
Log in

Closability, Regularity, and Approximation by Graphs for Separable Bilinear Forms

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider a countably generated and uniformly closed algebra of bounded functions. We assume that there is a lower semicontinuous, with respect to the supremum norm, quadratic form and that normal contractions operate in a certain sense. Then we prove that a subspace of the effective domain of the quadratic form is naturally isomorphic to a core of a regular Dirichlet form on a locally compact, separable metric space. We also show that any Dirichlet form on a countably generated measure space can be approximated by essentially discrete Dirichlet forms, i.e., energy forms on finite weighted graphs, in the sense of Mosco convergence, i.e., strong resolvent convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allain, “Sur la représentation des formes de Dirichlet,” Ann. Inst. Fourier, 25, 1–10 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Ambjorn, J. Jurkiwicz, and R. Loll, “Spectral Dimension of the Universe,” Phys. Rev. Lett., 95, 171301 (2005).

    Article  Google Scholar 

  3. L.-E. Andersson, “On the representation of Dirichlet forms,” Ann. Inst. Fourier, 25 (3 et 4), (1975), 11–25.

  4. M. T. Barlow, R. F. Bass, T. Kumagai, and A. Teplyaev, “Uniqueness of Brownian motion on Sierpinski carpets,” J. Eur. Math. Soc., 12, 655–701 (2010).

    MathSciNet  MATH  Google Scholar 

  5. B. Blackadar, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, Encyclopedia Math. Sciences, 122, Springer, New York (2006).

  6. N. Bouleau and F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, de Gruyter Studies in Math., 14, de Gruyter, Berlin (1991).

  7. N. Bourbaki, General Topology, Springer, Berlin (1966).

    MATH  Google Scholar 

  8. F. Cipriani, “Dirichlet forms as Banach algebras and applications,” Pacif. J. Math., 223(2), 229–249 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, London Math. Soc. Monographs Series, 35, Princeton Univ. Press, Princeton, NJ (2012).

  10. F. Englert, J.-M. Frere, M. Rooman, and P. Spindel, “Metric space-time as fixed point of the renormalization group equations on fractal structures,” Nuclear Physics B, 280, 147–180 (1987).

    Article  MathSciNet  Google Scholar 

  11. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Fymmetric Markov Frocesses, de Gruyter, Berlin, New York (1994).

    Book  Google Scholar 

  12. M. I. Gordin, “The central limit theorem for stationary processes,” Dokl. Akad. Nauk SSSR, 188, 739–741 (1969).

    MathSciNet  MATH  Google Scholar 

  13. M. I. Gordin and M. Peligrad, “On the functional central limit theorem via martingale approximation,” Bernoulli, 17, 424–440 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hinz, “Sup-norm-closable bilinear forms and Lagrangians,” to appear in Ann. Mat. Pura Appl. (2015).

  15. M. Hinz, D. Kelleher, and A. Teplyaev, “Measures and Dirichlet forms under the Gelfand transform,” Zap. Nauchn. Semin. POMI, 408, 303–322 (2012).

    MathSciNet  MATH  Google Scholar 

  16. M. Hinz, M. Röckner, and A. Teplyaev, “Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on fractals,” Stochastic Process. Appl., 123, 4373–4406 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Hinz and A. Teplyaev, “Dirac and magnetic Schrödinger operators on fractals,” J. Funct. Anal., 265, 2830–2854 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hinz and A. Teplyaev, “Local Dirichlet forms, Hodge theory, and the Navier-Stokes equations on topologically one-dimensional fractals,” Trans. Amer. Math. Soc., 367, 1347–1380 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York (2009).

    Book  MATH  Google Scholar 

  20. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  21. J. Kigami, Analysis on Fractals, Cambridge Univ. Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  22. S. Kusuoka and X. Y. Zhou, “Dirichlet forms on fractals: Poincaré constant and resistance,” Probab. Theory Related Fields, 93, 169–196 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  23. Z.-M. Ma and M. Röckner, Introduction to the Theory of Non-Symmetric Dirichlet Forms, Universitext, Springer, Berlin (1992).

    Book  MATH  Google Scholar 

  24. G. Mokobodzki, “Fermeabilité des formes du Dirichlet et inégalité de type Poincaré,” Pot. Anal., 4, 409–413 (1995).

    Article  MathSciNet  Google Scholar 

  25. U. Mosco, “Composite media and asymptotic Dirichlet forms,” J. Funct. Analysis, 123, 368–421 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Nekrashevich, Self-similar Groups. Mathematical Surveys and Monographs, 117, Amer. Math. Soc. (2005).

  27. V. Nekrashevych and A. Teplyaev, “Groups and analysis on fractals,” in: Proc. of Symposia in Pure Mathematics, Amer. Math. Soc., 77 (2008), pp. 143–182.

  28. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Acad. Press, San Diego (1980).

    MATH  Google Scholar 

  29. M. Reuter and F. Saueressig, “Fractal space-times under the microscope: a renormalization group view on Monte Carlo data,” J. High Energy Physics, 12 (2011) 10.1007/JHEP12(2011)012.

  30. R. S. Strichartz, Differential Equations on Fractals: a Tutorial, Princeton Univ. Press (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hinz.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 441, 2015, pp. 299–317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinz, M., Teplyaev, A. Closability, Regularity, and Approximation by Graphs for Separable Bilinear Forms. J Math Sci 219, 807–820 (2016). https://doi.org/10.1007/s10958-016-3149-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3149-7

Navigation