Skip to main content
Log in

A Bound for the Maximal Probability in the Littlewood–Offord Problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In this paper, we study a connection of the Littlewood–Offord problem with estimating the concentration functions of some symmetric, infinitely divisible distributions. It is shown that the values at zero of the concentration functions of weighted sums of i.i.d. random variables may be estimated by the values at zero of the concentration functions of symmetric, infinitely divisible distributions with the Lévy spectral measures which are multiples of the sum of delta-measures at ±weights involved in constructing the weighted sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Arak, “On the approximation by the accompanying laws of n-fold convolutions of distributions with nonnegative characteristic functions.” Teor. Veroyatn. Primen., 25, 225–246 (1980).

    MathSciNet  MATH  Google Scholar 

  2. T. V. Arak, “On the convergence rate in Kolmogorov’s uniform limit theorem. I,” Teor. Veroyatn. Primen., 26, 225–245 (1981).

    MathSciNet  MATH  Google Scholar 

  3. T. V. Arak and A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables,” Proc. Steklov Inst. Math., 174, 1–216 (1988).

    MathSciNet  Google Scholar 

  4. Yu. S. Eliseeva, “Multivariate estimates for the concentration functions of weighted sums of independent, identically distributed random variables,” Zap. Nauchn. Semin. POMI, 412, 121–137 (2013).

    Google Scholar 

  5. Yu. S. Eliseeva, F. Götze, and A. Yu. Zaitsev, “Estimates for the concentration functions in the Littlewood–Offord problem,” Zap. Nauchn. Semin. POMI, 420, 50–69 (2013).

    MATH  Google Scholar 

  6. Yu. S. Eliseeva, F. Götze, and A. Yu. Zaitsev, “Arak inequalities for concentration functions and the Littlewood–Offord problem,” arXiv:1506.09034 (2015).

  7. Yu. S. Eliseeva and A. Yu. Zaitsev, “Estimates for the concentration functions of weighted sums of independent random variables,” Teor. Veroyatn. Primen., 57, 768–777 (2012).

    Article  MathSciNet  Google Scholar 

  8. Yu. S. Eliseeva and A. Yu. Zaitsev, “On the Littlewood–Offord problem,” Zap. Nauchn. Semin. POMI, 431, 72–81 (2014).

    MathSciNet  MATH  Google Scholar 

  9. P. Erdös, “On a lemma of Littlewood and Offord,” Bull. Amer. Math. Soc., 51, 898–902 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Hengartner and R. Theodorescu, Concentration Functions [Russian translation], Nauka, Moscow (1980).

  11. J. E. Littlewood and A. C. Offord, “On the number of real roots of a random algebraic equation,” Rec. Math. [Mat. Sbornik] N.S., 12, 277–286 (1943).

  12. H. Nguyen and V. Vu, “Optimal inverse Littlewood–Offord theorems,” Adv. Math., 226, 5298–5319 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Nguyen and V. Vu, “Small probabilities, inverse theorems and applications,” in: L. Lovász et al. (eds), Erdös Centennial Proceeding, Springer (2013), pp. 409–463.

  14. M. Rudelson and R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices,” Adv. Math., 218, 600–633 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Rudelson and R. Vershynin, “The smallest singular value of a random rectangular matrix,” Comm. Pure Appl. Math., 62, 1707–1739 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Tao and V. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices,” Ann. Math., 169, 595–632 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Tao and V. Vu, “From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices,” Bull. Amer. Math. Soc., 46, 377–396 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Vershynin, “Invertibility of symmetric random matrices,” Random Structures and Algorithms, 44, 135–182 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Zaitsev.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 441, 2016, pp. 204–209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, A.Y. A Bound for the Maximal Probability in the Littlewood–Offord Problem. J Math Sci 219, 743–746 (2016). https://doi.org/10.1007/s10958-016-3143-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-3143-0

Navigation