Skip to main content

Random Perturbations of Autoresonance in Oscillating Systems with Small Dissipation

We consider the system of differential equations describing the initial step of capture of nonlinear oscillations in autoresonance under weak dissipation. We study the stability in probability of resonance solutions with unboundedly growing amplitude under persistent random perturbations. Bibliography: 11 titles. Illustrations: 1 Figure

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. A. Kalyakin and M. A. Shamsutdinov, Autoresonant asymptotics in an oscillating system with weak dissipation” [in Russian], Teor. Mat. Fiz. 160, No. 1, 102–111 (2009); English transl.: Theor. Math. Phys. 160, No. 1, 960–967 (2009).

  2. 2.

    S. Glebov, O. Kiselev, and N. Tarkhanov, “Autoresonance in a dissipative system,” J. Phys. A: Math. Theor. 43, 215203 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    J. Fajans and L. Friedland, “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators,” Am. J. Phys. 69, 1096–1102 (2001).

    Article  Google Scholar 

  4. 4.

    A. N. Kuznetsov, “Existence of solutions entering at a singular point of an autonomous system having a formal solution” [in Russian], Funkts. Anal. Pril. 23, No. 4, 63–74 (1989); English transl.: Funct. Anal. Appl. 23, No. 4, 308–317 (1989).

  5. 5.

    L. A. Kalyakin, “Existence theorems and estimates of solutions for equations of principal resonance” [in Russian], Sovrem. Mat. Pril. 85, 73–83 (2012); English transl.: J. Math. Sci., New York 200, No. 1, 82–95 (2014).

  6. 6.

    R. Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin etc. (2012).

    Book  MATH  Google Scholar 

  7. 7.

    N. N. Bogolubov and Yu. A. Mitropolsky, Asymptotic Methods in Theory of Non-Linear Oscillations, Gordon and Breach, New York (1961).

    Google Scholar 

  8. 8.

    O. A. Sultanov, “Stability of autoresonance in dissipative systems” [in Russian], Ufim. Mat. Zh. 7, No. 1, 59–71 (2015).

    MathSciNet  Google Scholar 

  9. 9.

    L. A. Kalyakin, “Stability of nondissipative systems under persistent random perturbations” [in Russian], Mat. Zametki 92, No. 1, 145–148 (2012); English transl.: Math. Notes 92, No. 1, 136–139 (2012).

  10. 10.

    O. A. Sultanov, “Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations” [in Russian], Zh. Vych. Mat. Mat. Fiz. 54, No. 1, 65–79 (2014); English transl.: Computat. Math. Math. Phys. 54, No. 1, 59–73 (2014).

  11. 11.

    M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York etc. (1998).

    Book  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. A. Sultanov.

Additional information

Translated from Problemy Matematicheskogo Analiza 86, July 2016, pp. 87–93.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sultanov, O.A. Random Perturbations of Autoresonance in Oscillating Systems with Small Dissipation. J Math Sci 219, 267–274 (2016). https://doi.org/10.1007/s10958-016-3104-7

Download citation