We establish the existence and uniqueness conditions for the weighted Cauchy type problem and the Cauchy problem for the linear Barbashin integro-differential equation with fractional partial derivative of order 0 < α ≤ 1 in the sense of Riemann–Liouville and Caputo. Bibliography: 8 titles.
Similar content being viewed by others
References
J. M. Appell, A. S. Kalitvin, and P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations, Marcel Dekker, New York (2000).
A. S. Kalitvin, Linear Operators with Partial Integrals [in Russian], Voronezh (2000).
A. S. Kalitvin and V. A. Kalitvin, The Volterra and Volterra-Fredholm Integral Equations with Partial Integrals [in Russian], Lipetsk State Pedag. Univ. Press, Lipetsk (2006).
A. S. Kalitvin and E. V. Frolova, Linear Equations with Partial Integrals. C-Theory [in Russian], Lipetsk State Pedag. Univ. Press, Lipetsk (2004).
A. S. Kalitvin, “Spectral properties of partial integral operators of Volterra and Volterra-Fredholm type,” Z. Anal. Anwend. 17, No. 2, 297-309 (1998).
A. S. Kalitvin, “On Volterra operators and equations with partial integrals,” In: S. G. Krein Voronezh Winter Mathematical School-2012, pp. 91-94, Voronezh State Univ. Press, Voronezh (2012).
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Fractional Order Derivatives and Applications [in Russian], Nauka Tekhnika, Minsk (1987).
A. A. Kilbas, M. M. Srivastava, and J. J. Trujllo, Theory and Applications of Fractional Differential Equations, Elsevier, New York etc. (2006).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Problemy Matematicheskogo Analiza 85, June 2016, pp. 119-125.
Rights and permissions
About this article
Cite this article
Kalitvin, A.S., Kalitvin, V.A. The Weighted Cauchy Type Problem and Cauchy Problem for the Linear Barbashin Integro-Differential Equations with Fractional Partial Derivative. J Math Sci 219, 125–132 (2016). https://doi.org/10.1007/s10958-016-3088-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-016-3088-3