Skip to main content

Geodesic Mappings and Their Generalizations

Abstract

This paper is devoted to further study of the theory of geodesic mappings and their generalizations, including conformal, holomorphically projective, F-planar, and almost geodesic mappings of affinely connected spaces.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. V. Beklemishev, “Differential geometry of spaces with almost complex structure,” Itogi Nauki. Geom. 1963, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1965), pp. 165–212.

  2. 2.

    V. E. Berezovski, A new form of fundamental equations of almost geodesic mappings of type π 1 [in Russian], preprint UkrNIITI No. 129, 16.03.1986.

  3. 3.

    V. E. Berezovski, “Almost geodesic mappings of affinely connected spaces,” in: Proc. All-Union Geom. Conf., Kishinev (1986), p. 41.

  4. 4.

    V. E. Berezovski, “First-type almost geodesic mappings of affinely connected spaces that preserve n-orthogonal systems of hypersurfaces,” in: Proc. Regional Conf., Uman’ (1990), p. 2.

  5. 5.

    V. E. Berezovski, First-type almost geodesic mappings of Riemannian spaces that preserve systems of n-orthogonal hypersurfaces [in Russian], preprint UkrNIITI No. 652, 08.05.1991.

  6. 6.

    V. E. Berezovski, Almost geodesic mappings of affinely connected spaces of type π *1 [in Russian], preprint UkrNIITI No. 654, 08.05.1991.

  7. 7.

    V. E. Berezovski, “On a particular case of first-type almost geodesic mappings of affinely connected spaces,” in: Proc. Int. Conf. “Lobachevsky and Modern Geometry,” Kazan (1992), p. 12.

  8. 8.

    V. E. Berezovski, “First-type almost geodesic canonical mappings of affinely connected spaces,” in: Proc. Int. Conf. Dedicated to the 90 Anniversary of G. F. Laptev, Moscow (1999), p. 6.

  9. 9.

    V. E. Berezovski and J. Mikeš, “Almost geodesic mappings of affinely connected spaces,” in: Proc. All-Union Geom. Conf., Odessa (1984), p. 18.

  10. 10.

    V. E. Berezovski and J. Mikeš, A new classification of almost geodesic mappings of affinely connected spaces [in Russian], preprint UkrNIITI No. 653, 08.05.1991.

  11. 11.

    V. E. Berezovski and J. Mikeš, “On the classification of almost geodesic mappings,” in: Proc. Conf. Dedicated to the 200 Anniversary of N. I. Lobachevsky, Odessa (1992), p. 54.

  12. 12.

    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of affinely connected spaces,” in: Proc. 5 Int. Conf. on Geometry and Topology in Honor of A. V. Pogorelov, Cherkassy (2003), pp. 14–15.

  13. 13.

    V. E. Berezovski and J. Mikeš, “A particular case of first-type almost geodesic mappings,” in: Proc. G. F. Laptev Int. Geom. Semin., Penza (2007), pp. 7–17.

  14. 14.

    V. E. Berezovski and J. Mikeš, “Canonical first-type almost geodesic mappings,” in: Proc. Int. Conf. “Geometry in Odessa 2009,” Odessa (2009), p. 43.

  15. 15.

    V. E. Berezovski and J. Mikeš, “On first-type almost geodesic mappings,” in: Proc. Ukr. Math. Congr., Kiev (2009).

  16. 16.

    V. E. Berezovski and J. Mikeš, “Almost geodesic mappings of type π 1 onto generalized Riccisymmetric spaces,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat., 151, No. 4, 9–14 (2009).

    MATH  Google Scholar 

  17. 17.

    V. E. Berezovski and J. Mikeš, “(n − 2)-Projective spaces of first type,” in: Proc. Int. Conf. “Geometry in Odessa 2010,” Odessa (2010).

  18. 18.

    V. E. Berezovski and J. Mikeš, “(n−2)-Projective spaces of first type,” Izv. Belinsky Penz. Gos. Univ. Ser. Fiz.-Mat., 39–43 (2011).

  19. 19.

    V. E. Berezovski and J. Mikeš, “Almost geodesic mappings of affinely connected spaces,” Itogi Nauki Tekhn. Sovr. Mat. Prilozh., 126, 62–95 (2013).

    Google Scholar 

  20. 20.

    J. Mikeš, O. Pokorná, G. Starko, and H. Vavříková, “Fundamental equations of almost geodesic mappings π2(e),” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 1 (536), 10–15 (2007).

    MATH  Google Scholar 

  21. 21.

    D. V. Vedenyapin, “On some (n−2)-projective spaces,” Nauch. Dokl. Vyssh. Shkoly. Fiz.-Mat., 8, 119–125 (1958).

    Google Scholar 

  22. 22.

    I. Hinterleitner and J. Mikeš, “Projective equivalence and equiaffinely connected spaces,” J. Math. Sci., 177, No. 4, 546–550 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    I. Hinterleitner, J. Mikeš, and J. Stránská, “Infinitesimal F-planar transformations,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 4, 13–18 (2008).

    MathSciNet  MATH  Google Scholar 

  24. 24.

    V. V. Domashev and J. Mikeš, “Theory of holomorphically projective mappings of Kählerian spaces,” Mat. Zametki, 23, No. 2, 297–303 (1978).

    MathSciNet  MATH  Google Scholar 

  25. 25.

    L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, Differential-geometric Structures on Manifolds, Itogi Nauki Tekhn. Probl. Geom., All-Union Istitute for Scientific and Technical Information (VINITI), Moscow (1979).

  26. 26.

    F. V. Emel’yanov and V. F. Kirichenko, “On almost geodesic mappings of class π 2 of almost Hermitian manifolds,” Mat. Zametki, 90, No. 4, 517–526 (2011).

    MathSciNet  Article  Google Scholar 

  27. 27.

    V. F. Kagan, Subprojective Spaces [in Rusian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  28. 28.

    J. Mikeš, Geodesic and holomorphically projective mappings of special Riemannian spaces [in Russian], Ph.D. thesis, Odessa Univ. (1979).

  29. 29.

    J. Mikeš, “Geodesic Ricci mappings of 2-symmetric Riemannian spaces,” Mat. Zametki, 28, No. 2, 313–317 (1980).

    MathSciNet  MATH  Google Scholar 

  30. 30.

    J. Mikeš, “Geodesic mappings of Einstein spaces,” Mat. Zametki, 28, No. 6, 935–938 (1980).

    MathSciNet  MATH  Google Scholar 

  31. 31.

    J. Mikeš, “F-Planar mappings of affinely connected spaces,” Arch. Math. Brno, 27a, 53–56 (1991).

    MATH  Google Scholar 

  32. 32.

    J. Mikeš, “On F-planar and f-planar mappings, transformations, and deformations,” in: Geometry of Generalized Spaces [in Russian], Penza (1992), pp. 60–65.

  33. 33.

    J. Mikeš, “On special F-planar mappings of affinely connected spaces,” Vestn. Mosk. Univ. Ser. Mat., 3, 18–24 (1994).

    MATH  Google Scholar 

  34. 34.

    J. Mikeš, Geodesic, F-planar, and Holomorphically Projective Mappings of Riemannian Spaces and Spaces with Affine Connections [in Russian], Thesis, Palacky Univ., Olomouc, Czech Rep. (1995).

  35. 35.

    J. Mikeš, “F-Planar mappings onto Riemannian spaces,” in: Proc. Int. Conf. “Invariant Methods in Geometry, Analysis, and Mathematical Physics” [in Russian] Moscow State Univ. Moscow (2001), pp. 138–145.

  36. 36.

    J. Mikeš and V. E. Berezovski, Geodesic mappings of affinely connected spaces onto Riemannian spaces [in Russian], preprint UkrNIITI No. 347, 25.02.1985.

  37. 37.

    J. Mikeš and I. Hinterleitner, “On fundamental equations of geodesic mappings and their generalizations,” J. Math. Sci., 174, No. 5, 537–554 (2011).

    MATH  Article  Google Scholar 

  38. 38.

    J. Mikeš and N. S. Sinyukov, “On quasi-planar mappings of affinely connected spaces,” Izv. Vyssh. Ucheb. Zaved. Mat., 27, No. 1, 55–61 (1983).

    MATH  Google Scholar 

  39. 39.

    J. Mikeš, M. Jukl, and L. Juklova, “Some results on traceless decomposition of tensors,” J. Math. Sci., 174, No. 5, 627–640 (2011).

    MATH  Article  Google Scholar 

  40. 40.

    A. P. Norden, Spaces with Affine Connections [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  41. 41.

    A. Z. Petrov, “Modeling of physical fields,” in: Gravitation and General Relativity [in Russian], 4-5, Kazan Univ. (1968), pp. 7–21.

  42. 42.

    A. Z. Petrov, New Methods in the General Theory of Relativity [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  43. 43.

    Ž. Radulovič, J. Mikeš, and M. L. Gavril’chenko, Geodesic Mappings and Deformtions of Riemannian Spaces [in Russian], CID, Podgorica, Odessa State Univ. (1997).

  44. 44.

    N. S. Sinyukov, “Almost geodesic mappings of affinely connected and Riemannian spaces,” Dokl. Akad Nauk SSSR, 151, 781–782 (1963).

    MathSciNet  MATH  Google Scholar 

  45. 45.

    N. S. Sinyukov, “Almost geodesic mappings of affinely connected spaces and e-structures,” Mat. Zametki, 7, No. 4, 449–459 (1970).

    MathSciNet  MATH  Google Scholar 

  46. 46.

    N. S. Sinyukov, “Infinitesimal almost geodesic transformations of affinely connected spaces and Riemannian spaces,” Ukr. Geom. Sb., 9, 86–95 (1970).

    MathSciNet  MATH  Google Scholar 

  47. 47.

    N. S. Sinyukov, Theory of geodesic mappings of Riemannian spaces and its generalizations [in Russian], thesis, Kiev (1971).

  48. 48.

    N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  49. 49.

    N. S. Sinyukov, “Almost geodesic mappings of affinely connected and Riemannian spaces,” J. Sov. Math., 25, No. 4, 1235–1249 (1984).

    MATH  Article  Google Scholar 

  50. 50.

    N. S. Sinyukov, Pronciples of the theory of almost geodesic mappings of Riemannian spaces “in the whole” [in Russian], preprint VINITI No. 562-91B (1991).

  51. 51.

    N. S. Sinyukov, I. N. Kurbatova, and J.Mikeš, Holomorphically Projective Mappings of Kählerian Spaces [in Russian], Odessa State Univ., Odessa (1985).

    Google Scholar 

  52. 52.

    N. S. Sinyukov and E. N. Sinyukova, “On holomorphically projective mappings of special Kählerian spaces,” Mat. Zametki, 36, No. 3, 417–423 (1984).

    MathSciNet  MATH  Google Scholar 

  53. 53.

    V. S. Sobchuk, “Intrinsic almost geodesic mappings,” Izv. Vyssh. Uchebn. Zaved. Mat., 5, 62–64 (1989).

    MathSciNet  MATH  Google Scholar 

  54. 54.

    V. S. Sobchuk, “Almost geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces,” Mat. Zametki, 17, No. 5, 757–763 (1975).

    MathSciNet  MATH  Google Scholar 

  55. 55.

    A. S. Solodovnikov, “Projective transformations of Riemannian spaces,” Usp. Mat. Nauk (N.S.), 11, No. 4 (70), 45–116 (1956).

  56. 56.

    H. Chudá and J. Mikeš, “Geodesic and F2-planar mappings under certain initial conditions,” Proc. Int. Geom. Center 2008, 1, Nos. 1–2, 159–167 (2009).

  57. 57.

    V. M. Chernyshenko, “Affinely connected spaces with complexes of geodesics,” Nauch. Zap. Dnepropetr. Univ., 55, No. 6, 105–110 (1961).

    Google Scholar 

  58. 58.

    V. M. Chernyshenko, “Spaces with special complexes of geodesic lines,” Tr. Semin. Vekt. Tenz. Anal., 253–268 (1961).

  59. 59.

    V. S. Shadny, “Almost geodesic mappings of Riemannian spaces onto spaces of constant curvature,” Mat. Zametki, 25, No. 2, 293–296 (1979).

    MathSciNet  Google Scholar 

  60. 60.

    Ya. L. Shapiro, “Geodesic direction fields and projective path systems,” Mat. Sb., 36, 125–148 (1955).

    MathSciNet  Google Scholar 

  61. 61.

    A. P. Shirokov, “Space over algebras and their appkications,” J. Math. Sci., 108, No. 2, 232–248 (2002).

    MathSciNet  MATH  Article  Google Scholar 

  62. 62.

    M. Shiha, Geodesic and holomorphically projective mappings of parabolically Kählerian spaces [in Russian], Ph.D. thesis, Moscow State Pedag. Inst., Moscow (1992).

  63. 63.

    N. V. Yablonskaya, Almost geodesic mappings of affinely connected spaces with torsion [in Russian], preprint VINITI No. 2190-79Dep, 19.06.1979.

  64. 64.

    N. V. Yablonskaya, Invariant geometric objects of almost geodesic mappings π 2 of general affinely connected spaces [in Russian], preprint VINITI No. 543-80Dep, 12.02.1980.

  65. 65.

    N. V. Yablonskaya, “Some classes of almost geodesic mappings of general affinely connected spaces,” Ukr. Geom. Sb., 27, 120–124 (1984).

    MathSciNet  MATH  Google Scholar 

  66. 66.

    N. V. Yablonskaya, “Special groups of almost geodesic transformations of affinely connected spaces,” Izv. Vyssh. Uchebn. Zaved. Mat., 1, 78–80 (1986).

    MathSciNet  Google Scholar 

  67. 67.

    A. Adamów, “On reduced almost geodesic mappings in Riemannian spaces,” Demonstr. Math., 15, 925–934 (1982).

    MathSciNet  MATH  Google Scholar 

  68. 68.

    M. Afwat and A. Švec, “Global differential geometry of hypersurfaces,” Rozpr. Česk. Akad. Ved, Rada Mat. Prir. Ved, 88, No. 7 (1978).

  69. 69.

    A. V. Aminova, “Projective transformations of pseudo-Riemannian manifolds,” J. Math. Sci., 113, No. 3, 367–470 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  70. 70.

    V. E. Berezovski, “On special almost geodesic mappings of the type π 1,” in: Proc. Satelite Conf. of ICM in Berlin, Brno (1998), p. 7.

  71. 71.

    V. E. Berezovski and J. Mikeš, “On classification of almost geodesic mappings of affineconnected spaces,” in: Proc. Conf. “Differential Geometry and Its Applications,” Dubrovnik, 1988, Dubrovnik (1989), pp. 41–48.

  72. 72.

    V. E. Berezovski and J. Mikeš, “On a classification of almost geodesic mappings of affine connection spaces,” Acta Univ. Palacki, Fac. Rerum Nat. Math., 35, 21–24 (1996).

    MathSciNet  MATH  Google Scholar 

  73. 73.

    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of type π 1 which maintain a system n-orthogonal hypersurfaces,” in: Proc. Conf. on Differ. Geom. Budapest, Budapest (1996), p. 21.

  74. 74.

    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of the type π1 of Riemannian spaces preserving a system n-orthogonal hypersurfaces,” Rend. Circ. Mat. Palermo, II. Suppl., 59, 103–108 (1999).

    MathSciNet  Google Scholar 

  75. 75.

    V. E. Berezovski and J. Mikeš, “On special almost geodesic mappings of type π1 of spaces with affine connection,” Acta Univ. Palacki, Fac. Rerum Nat. Math., 43, 21–26 (2004).

    MathSciNet  MATH  Google Scholar 

  76. 76.

    V. E. Berezovski and J. Mikeš, “On special almost geodesic mappings of type π1 of spaces with affine connection,” in: Proc. 11 Math. Conf. Kiev, Kiev (2006), p. 320.

  77. 77.

    V. E. Berezovski and J. Mikeš, “On fundamental equations in Cauchy-type form of special almost geodesic mappings of type π1,” in: Proc. 12 Math. Conf. Kiev, Kiev (2008), p. 500.

  78. 78.

    V. E. Berezovski and J. Mikeš, “On special case of almost geodesic mappings of spaces with affine connection that preserve the Ricci tensor,” Proc. 13 Math. Conf. Kiev, Kiev (2010), p. 55.

  79. 79.

    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of type π1 which preserve northogonal system of hyperplanes of Riemannian spaces,” in: Proc. Int. Conf. “Geometry in Odessa 2010,” Odessa (2010), p. 71.

  80. 80.

    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Canonical almost geodesic mappings of type π1 onto pseudo-Riemannian manifolds,” in: Proc. Int. Conf. “Differential Geometry and Its Applications,” Olomouc, August 2007, World Scientific (2008), pp. 65–76.

  81. 81.

    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Almost geodesic mappings onto generalized Ricci-symmetric manifolds,” in: Proc. 9 Int. Conf. Aplimat 2010, Bratislava (2010).

  82. 82.

    V. E. Berezovski, J. Mikeš, A. Vanžurová, “Almost geodesic mappings onto generalized Riccisymmetric manifolds,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 26, No. 2, 221–230 (2010).

    MATH  Google Scholar 

  83. 83.

    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Fundamental PDEs of canonical almost geodesic mappings of type \( {\tilde{\pi}}_1 \),” arXiv:1006.3200 (2010).

  84. 84.

    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “On a class of curvature preserving almost geodesic mappings of manifolds with affine connection,” in: Proc. 10 Int. Conf. Aplimat 2011, Bratislava (2011), pp. 623–628.

  85. 85.

    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Fundamental PDEs of canonical almost geodesic mappings of type π1,” Bull. Malays. Math. Sci. Soc. (2), 37, No. 3, 647–659 (2014).

  86. 86.

    H. W. Brinkmann, “Einstein spaces which are mapped conformally on each other,” Math. Ann., 94, 119–145 (1925).

    MathSciNet  MATH  Article  Google Scholar 

  87. 87.

    O. Chepurna and I. Hinterleitner, “On the mobility degree of (pseudo-) Riemannian spaces with respect to concircular mappings,” Miskolc Math. Notes, 14, No. 2, 561–568 (2013).

    MathSciNet  MATH  Google Scholar 

  88. 88.

    H. Chudá and J. Mikeš, “F-Planar mappings with certain initial conditions,” in: Proc. 5 Int. Conf. Aplimat 2006, Bratislava (2006), pp. 83–88.

  89. 89.

    H. Chudá and J. Mikeš, “First quadratic integral of geodesics with certain initial conditions,” in: Proc. 6 Int. Conf. Aplimat 2007, Bratislava (2007), pp. 85–88.

  90. 90.

    H. Chudá, M. Chodorová, and J. al Lami Raad, “On holomorphically projective mappings onto almost Hermitian spaces,” Aplimat J. Appl. Math., 4, 667–672 (2011).

    Google Scholar 

  91. 91.

    H. Chudá, M. Chodorová, and M. Shiha, “On composition of conformal and holomorphically projective mappings between conformally Kählerian spaces,” Aplimat J. Appl. Math., 5, No. 3, 91–96 (2012).

    Google Scholar 

  92. 92.

    H. Chudá and J. Mikeš, “On geodesic mappings with certain initial conditions,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 26, No. 2, 337–341 (2010).

    MathSciNet  MATH  Google Scholar 

  93. 93.

    H. Chudá and J. Mikeš, “Conformally geodesic mappings satisfying a certain initial condition,” Arch. Math. (Brno), 47, No. 5, 389–394 (2011).

    MathSciNet  MATH  Google Scholar 

  94. 94.

    H. Chudá, J. Mikeš, and M. Chodorová, “On holomorphically projective mappings with certain initial conditions,” Aplimat J. Appl. Math., 673–678 (2011).

  95. 95.

    H. Chudá and M. Shiha, “Conformally holomorphically projective mappings satisfying a certain initial condition,” Miskolc Math. Notes, 14, No. 2, 569–574 (2013).

    MathSciNet  MATH  Google Scholar 

  96. 96.

    L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton (1926).

    MATH  Google Scholar 

  97. 97.

    L. P. Eisenhart, Non-Riemannian Geometry, Princeton Univ. Press, Princeton (1926).

    MATH  Google Scholar 

  98. 98.

    S. Fučík and A. Kufner, Nonlinear Differential Equations [in Czech], TKI, SNTL, Praha (1978).

    MATH  Google Scholar 

  99. 99.

    A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., 123, 35–58 (1980).

    MathSciNet  MATH  Article  Google Scholar 

  100. 100.

    I. Hinterleitner, “Special mappings of equidistant spaces,” Aplimat J. Appl. Math., 2, 31–36 (2008).

    Google Scholar 

  101. 101.

    I. Hinterleitner, “On holomorphically projective mappings of e-Kähler manifolds,” Arch. Math. (Brno), 48, No. 5, 333–338 (2012).

    MathSciNet  MATH  Article  Google Scholar 

  102. 102.

    I. Hinterleitner, “Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature,” Publ. Inst. Math., 94, 125–130 (2013).

    MathSciNet  MATH  Article  Google Scholar 

  103. 103.

    I. Hinterleitner and J. Mikeš, “On F-planar mappings of spaces with affine connections,” Note Mat., 27, No. 1, 111–118 (2007).

    MathSciNet  MATH  Google Scholar 

  104. 104.

    I. Hinterleitner and J. Mikeš, “Projective equivalence and manifolds with equiaffine connection,” J. Math. Sci., 177, No. 4, 546–550 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  105. 105.

    I. Hinterleitner and J. Mikeš, “On fundamental equations of geodesic mappings and their generalizations,” J. Math. Sci., 174, No. 5, 537–554 (2011).

    MATH  Article  Google Scholar 

  106. 106.

    I. Hinterleitner and J. Mikeš, “On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds,” Arch. Math. (Brno), 49, No. 5, 295–302 (2013).

    MathSciNet  MATH  Article  Google Scholar 

  107. 107.

    I. Hinterleitner and J. Mikeš, “Geodesic mappings and Einstein spaces,” in: Geometric Methods in Physics, 331–335 (2013); arXiv:1201.2827v1 [math.DG].

  108. 108.

    I. Hinterleitner and J. Mikeš, “Geodesic mappings of (pseudo) Riemannian manifolds preserve class of differentiability,” Miskolc Math. Notes, 14, No. 2, 575–582 (2013).

    MathSciNet  MATH  Google Scholar 

  109. 109.

    I. Hinterleitner, J. Mikeš, and P. Peška, “On F ε2 -planar mappings of (pseudo) Riemannian manifolds,” Arch. Math. (Brno), 50, No. 5 287–295 (2014).

  110. 110.

    J. Hrdina, “Almost complex projective structures and their morphisms,” Arch. Math. (Brno), 45, No. 4 255–264 (2009).

    MathSciNet  MATH  Google Scholar 

  111. 111.

    S. Ishihara, “Holomorphically projective changes and their groups in an almost complex manifold,” Tohoku Math. J., II. Ser., 9, 273–297 (1957).

    MathSciNet  MATH  Article  Google Scholar 

  112. 112.

    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vols. 1, 2, Interscience, New York–London (1963, 1969).

  113. 113.

    I. N. Kurbatova, “HP-mappings of H-spaces,” Ukr. Geom. Sb., 27, 75–83 (1984).

    MathSciNet  MATH  Google Scholar 

  114. 114.

    J. al Lami Raad, J. Mikeš, and M. škodová, “On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces,” Arch. Math. (Brno), 42, suppl., 291-299 (2006).

  115. 115.

    T. Levi-Civita, “Sulle transformationi delle equazioni dinamiche,” Ann. Mat. Milano, 24, Ser. 2, 255–300 (1886).

  116. 116.

    J. Mikeš, “F-Planar mappings and transformations,” in: Proc. Conf. “Differential Geometry and Its Applications,” Brno, August 24–30, 1986 Brno (1986), pp. 245–254.

  117. 117.

    J. Mikeš, “Global geodesic mappings and their generalizations for compact Riemannian spaces,” in: Proc. Conf. “Differential Geometry and Its Applications,” Opava, 1992, Opava (1992), pp. 143–149.

  118. 118.

    J. Mikeš, “Special F-planar mappings of affinely connected spaces onto Riemannian spaces,” Vestn. Mosk. Univ., Ser. Mat., 3, 18–24 (1994).

    MATH  Google Scholar 

  119. 119.

    J. Mikeš, “Geodesic mappings of affinely connected and Riemannian spaces,” J. Math. Sci., 78, No. 3, 311–333 (1996) .

    MathSciNet  MATH  Article  Google Scholar 

  120. 120.

    J. Mikeš, “Holomorphically projective mappings and their generalizations,” J. Math. Sci., 89, No. 3, 1334–1353 (1998).

    MathSciNet  MATH  Article  Google Scholar 

  121. 121.

    J. Mikeš, V. Kiosak, and A. Vanžurová, Geodesic Mappings of Manifolds with Affine Connection, Palacky Univ. Press, Olomouc (2008).

    MATH  Google Scholar 

  122. 122.

    J. Mikeš, S. Báscó, and V. E. Berezovski, “Geodesic mappings of weakly Berwald spaces and Berwald spaces onto Riemannian spaces,” Int. J. Pure Appl. Math., 45, No. 3, 413–418 (2008).

    MathSciNet  MATH  Google Scholar 

  123. 123.

    J. Mikeš and V. E. Berezovski, “Geodesic mappings of affinely connected spaces onto Riemannian spaces,” in: Proc. Conf. “Differential Geometry and Its Applications,” Eger, Hungary, August 20–25, 1989, Publ. Comp. Colloq. Math. Soc. J. Bolyai, 56, 491–494 (1992).

  124. 124.

    J. Mikeš and M. Chodorová, “On concircular and torse-forming vector fields on compact manifolds,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 27 (2010).

  125. 125.

    J. Mikeš, H. Chudá, and I. Hinterleitner, “Conformally holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition,” Int. J. Geom. Methods Mod. Phys., 11, No. 5, 1450044 (2014).

    MathSciNet  MATH  Article  Google Scholar 

  126. 126.

    J. Mikeš, O. Pokorná, and H. Vavříková, “On almost geodesic mappings pi 2(e), e = ±1,” in: Proc. Int. Conf. Aplimat, Part II, Bratislava (2005), pp. 315–321.

  127. 127.

    J. Mikeš and L. Rachunek, “T-Semisymmetric spaces and concircular vector fields,” Rend. Circ. Mat. Palermo, II. Suppl. Ser., 69, 187–193 (2002).

    MathSciNet  MATH  Google Scholar 

  128. 128.

    J. Mikeš and M. Škodová, “Concircular vector fields on compact manifolds with affine connections,” Publ. RSME, 10, 302–307 (2007).

    MATH  Google Scholar 

  129. 129.

    J. Mikeš, A. Vanžurová, and I. Hinterleitner, Geodesic Mappings and Some Generalizations, Publ. Palacky Univ., Olomouc (2009).

    MATH  Google Scholar 

  130. 130.

    T. Otsuki and Y. Tashiro, “On curves in Kählerian spaces,” Math. J. Okayama Univ., 4, 57–78 (1954).

    MathSciNet  MATH  Google Scholar 

  131. 131.

    M. Prvanović, “Holomorphically projective transformations in a locally product space,” Math. Balk., 1, 195–213 (1971).

    MathSciNet  MATH  Google Scholar 

  132. 132.

    L. Rachunek and J. Mikeš, “On tensor fields semiconjugated with torse-forming vector fields,” Acta Univ. Palacki, Fac. Rerum Nat. Math., 44, 151–160 (2005).

    MathSciNet  MATH  Google Scholar 

  133. 133.

    M. Shiha, “On the theory of holomorphically projective mappings of parabolically Kählerian spaces,” in: Proc. Conf. “Differential Geometry and Its Applications, Opava, 1992, Math. Publ., 1, Silesian Univ. Opava (1993), pp. 157–160.

  134. 134.

    M. Shiha and J. Mikeš, “On holomorphically projective flat parabolically Kählerian spaces,” Contemp. Geom. Related Topics. Čigoja Publ. Comp., 250, 467–474 (2006).

    MATH  Google Scholar 

  135. 135.

    M. Škodová, J. Mikeš, and O. Pokorná, “On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces,” Rend. Circ. Mat. Palermo. Ser. II, 75, 309–316 (2005).

    MATH  Google Scholar 

  136. 136.

    V. S. Sobchuk, J. Mikeš, and O. Pokorná, “On almost geodesic mappings π 2 between semisymmetric Riemannian spaces,” Novi Sad J. Math., 29, No. 3, 309–312 (1999).

    MathSciNet  MATH  Google Scholar 

  137. 137.

    M. S. Stanković, M. Lj. Zlatanović, and Lj. S. Velimirović, “Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind,” Czech. Math. J., 60, No. 3, 635–653 (2010).

    MATH  Article  Google Scholar 

  138. 138.

    M. S. Stanković, M. Lj. Zlatanović, and Lj. S. Velimirović, “Equitorsion holomorphically projective mappings of generalized Kählerian space of the second kind,” Int. Electron. J. Geom., 3, No. 2, 26–39 (2010).

    MathSciNet  MATH  Google Scholar 

  139. 139.

    M. S. Stanković, S. M. Minćić, and Lj. S. Velimirović, “On equitorsion holomorphically projective mappings of generalized Kählerian spaces,” Czech. Math. J., 54, No. 3, 701–715 (2004).

    MATH  Article  Google Scholar 

  140. 140.

    M. S. Stanković, S. M. Minćić, Lj. S. Velimirović, “On holomorphically projective mappings of generalized Kählerian spaces,” Mat. Vesn., 54, Nos. 3–4, 195–202 (2002).

    MATH  Google Scholar 

  141. 141.

    Y. Tashiro, “On a holomorphically projective correspondence in an almost complex space,” Math. J. Okayama Univ., 6, 147–152 (1957).

    MathSciNet  MATH  Google Scholar 

  142. 142.

    G. Vrănceanu, Lecons de Géométrie Différentielle, Acad. RPR, Bucharest (1957).

    MATH  Google Scholar 

  143. 143.

    K. Yano, Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press (1965).

  144. 144.

    K. Yano, “Concircular geometry, I, II, III, IV, V,” Proc. Imp. Acad. Jpn., 16, 195–200, 345–360, 442–448, 505–511 (1940); 18, 446–451 (1942).

  145. 145.

    K. Yano, “On the torse-forming directions in Riemannian spaces,” Proc. Imp. Acad. Tokyo, 20, 340-345 (1944).

    MathSciNet  MATH  Article  Google Scholar 

  146. 146.

    K. Yano and S. Bochner, Curvature and Betti Numbers, Ann. Math. Stud., 32, Princeton Univ. Press, Princeton (1953).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Mikeš.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 96, Geometry and Analysis, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikeš, J., Berezovski, V.E., Stepanova, E. et al. Geodesic Mappings and Their Generalizations. J Math Sci 217, 607–623 (2016). https://doi.org/10.1007/s10958-016-2993-9

Download citation