Advertisement

Journal of Mathematical Sciences

, Volume 217, Issue 5, pp 607–623 | Cite as

Geodesic Mappings and Their Generalizations

  • J. MikešEmail author
  • V. E. Berezovski
  • E. Stepanova
  • H. Chudá
Article
  • 49 Downloads

Abstract

This paper is devoted to further study of the theory of geodesic mappings and their generalizations, including conformal, holomorphically projective, F-planar, and almost geodesic mappings of affinely connected spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Beklemishev, “Differential geometry of spaces with almost complex structure,” Itogi Nauki. Geom. 1963, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1965), pp. 165–212.Google Scholar
  2. 2.
    V. E. Berezovski, A new form of fundamental equations of almost geodesic mappings of type π 1 [in Russian], preprint UkrNIITI No. 129, 16.03.1986.Google Scholar
  3. 3.
    V. E. Berezovski, “Almost geodesic mappings of affinely connected spaces,” in: Proc. All-Union Geom. Conf., Kishinev (1986), p. 41.Google Scholar
  4. 4.
    V. E. Berezovski, “First-type almost geodesic mappings of affinely connected spaces that preserve n-orthogonal systems of hypersurfaces,” in: Proc. Regional Conf., Uman’ (1990), p. 2.Google Scholar
  5. 5.
    V. E. Berezovski, First-type almost geodesic mappings of Riemannian spaces that preserve systems of n-orthogonal hypersurfaces [in Russian], preprint UkrNIITI No. 652, 08.05.1991.Google Scholar
  6. 6.
    V. E. Berezovski, Almost geodesic mappings of affinely connected spaces of type π1* [in Russian], preprint UkrNIITI No. 654, 08.05.1991.Google Scholar
  7. 7.
    V. E. Berezovski, “On a particular case of first-type almost geodesic mappings of affinely connected spaces,” in: Proc. Int. Conf. “Lobachevsky and Modern Geometry,” Kazan (1992), p. 12.Google Scholar
  8. 8.
    V. E. Berezovski, “First-type almost geodesic canonical mappings of affinely connected spaces,” in: Proc. Int. Conf. Dedicated to the 90 Anniversary of G. F. Laptev, Moscow (1999), p. 6.Google Scholar
  9. 9.
    V. E. Berezovski and J. Mikeš, “Almost geodesic mappings of affinely connected spaces,” in: Proc. All-Union Geom. Conf., Odessa (1984), p. 18.Google Scholar
  10. 10.
    V. E. Berezovski and J. Mikeš, A new classification of almost geodesic mappings of affinely connected spaces [in Russian], preprint UkrNIITI No. 653, 08.05.1991.Google Scholar
  11. 11.
    V. E. Berezovski and J. Mikeš, “On the classification of almost geodesic mappings,” in: Proc. Conf. Dedicated to the 200 Anniversary of N. I. Lobachevsky, Odessa (1992), p. 54.Google Scholar
  12. 12.
    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of affinely connected spaces,” in: Proc. 5 Int. Conf. on Geometry and Topology in Honor of A. V. Pogorelov, Cherkassy (2003), pp. 14–15.Google Scholar
  13. 13.
    V. E. Berezovski and J. Mikeš, “A particular case of first-type almost geodesic mappings,” in: Proc. G. F. Laptev Int. Geom. Semin., Penza (2007), pp. 7–17.Google Scholar
  14. 14.
    V. E. Berezovski and J. Mikeš, “Canonical first-type almost geodesic mappings,” in: Proc. Int. Conf. “Geometry in Odessa 2009,” Odessa (2009), p. 43.Google Scholar
  15. 15.
    V. E. Berezovski and J. Mikeš, “On first-type almost geodesic mappings,” in: Proc. Ukr. Math. Congr., Kiev (2009).Google Scholar
  16. 16.
    V. E. Berezovski and J. Mikeš, “Almost geodesic mappings of type π 1 onto generalized Riccisymmetric spaces,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat., 151, No. 4, 9–14 (2009).zbMATHGoogle Scholar
  17. 17.
    V. E. Berezovski and J. Mikeš, “(n − 2)-Projective spaces of first type,” in: Proc. Int. Conf. “Geometry in Odessa 2010,” Odessa (2010).Google Scholar
  18. 18.
    V. E. Berezovski and J. Mikeš, “(n−2)-Projective spaces of first type,” Izv. Belinsky Penz. Gos. Univ. Ser. Fiz.-Mat., 39–43 (2011).Google Scholar
  19. 19.
    V. E. Berezovski and J. Mikeš, “Almost geodesic mappings of affinely connected spaces,” Itogi Nauki Tekhn. Sovr. Mat. Prilozh., 126, 62–95 (2013).Google Scholar
  20. 20.
    J. Mikeš, O. Pokorná, G. Starko, and H. Vavříková, “Fundamental equations of almost geodesic mappings π2(e),” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 1 (536), 10–15 (2007).zbMATHGoogle Scholar
  21. 21.
    D. V. Vedenyapin, “On some (n−2)-projective spaces,” Nauch. Dokl. Vyssh. Shkoly. Fiz.-Mat., 8, 119–125 (1958).Google Scholar
  22. 22.
    I. Hinterleitner and J. Mikeš, “Projective equivalence and equiaffinely connected spaces,” J. Math. Sci., 177, No. 4, 546–550 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    I. Hinterleitner, J. Mikeš, and J. Stránská, “Infinitesimal F-planar transformations,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 4, 13–18 (2008).MathSciNetzbMATHGoogle Scholar
  24. 24.
    V. V. Domashev and J. Mikeš, “Theory of holomorphically projective mappings of Kählerian spaces,” Mat. Zametki, 23, No. 2, 297–303 (1978).MathSciNetzbMATHGoogle Scholar
  25. 25.
    L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, Differential-geometric Structures on Manifolds, Itogi Nauki Tekhn. Probl. Geom., All-Union Istitute for Scientific and Technical Information (VINITI), Moscow (1979).Google Scholar
  26. 26.
    F. V. Emel’yanov and V. F. Kirichenko, “On almost geodesic mappings of class π 2 of almost Hermitian manifolds,” Mat. Zametki, 90, No. 4, 517–526 (2011).MathSciNetCrossRefGoogle Scholar
  27. 27.
    V. F. Kagan, Subprojective Spaces [in Rusian], Fizmatgiz, Moscow (1961).Google Scholar
  28. 28.
    J. Mikeš, Geodesic and holomorphically projective mappings of special Riemannian spaces [in Russian], Ph.D. thesis, Odessa Univ. (1979).Google Scholar
  29. 29.
    J. Mikeš, “Geodesic Ricci mappings of 2-symmetric Riemannian spaces,” Mat. Zametki, 28, No. 2, 313–317 (1980).MathSciNetzbMATHGoogle Scholar
  30. 30.
    J. Mikeš, “Geodesic mappings of Einstein spaces,” Mat. Zametki, 28, No. 6, 935–938 (1980).MathSciNetzbMATHGoogle Scholar
  31. 31.
    J. Mikeš, “F-Planar mappings of affinely connected spaces,” Arch. Math. Brno, 27a, 53–56 (1991).zbMATHGoogle Scholar
  32. 32.
    J. Mikeš, “On F-planar and f-planar mappings, transformations, and deformations,” in: Geometry of Generalized Spaces [in Russian], Penza (1992), pp. 60–65.Google Scholar
  33. 33.
    J. Mikeš, “On special F-planar mappings of affinely connected spaces,” Vestn. Mosk. Univ. Ser. Mat., 3, 18–24 (1994).zbMATHGoogle Scholar
  34. 34.
    J. Mikeš, Geodesic, F-planar, and Holomorphically Projective Mappings of Riemannian Spaces and Spaces with Affine Connections [in Russian], Thesis, Palacky Univ., Olomouc, Czech Rep. (1995).Google Scholar
  35. 35.
    J. Mikeš, “F-Planar mappings onto Riemannian spaces,” in: Proc. Int. Conf. “Invariant Methods in Geometry, Analysis, and Mathematical Physics” [in Russian] Moscow State Univ. Moscow (2001), pp. 138–145.Google Scholar
  36. 36.
    J. Mikeš and V. E. Berezovski, Geodesic mappings of affinely connected spaces onto Riemannian spaces [in Russian], preprint UkrNIITI No. 347, 25.02.1985.Google Scholar
  37. 37.
    J. Mikeš and I. Hinterleitner, “On fundamental equations of geodesic mappings and their generalizations,” J. Math. Sci., 174, No. 5, 537–554 (2011).zbMATHCrossRefGoogle Scholar
  38. 38.
    J. Mikeš and N. S. Sinyukov, “On quasi-planar mappings of affinely connected spaces,” Izv. Vyssh. Ucheb. Zaved. Mat., 27, No. 1, 55–61 (1983).zbMATHGoogle Scholar
  39. 39.
    J. Mikeš, M. Jukl, and L. Juklova, “Some results on traceless decomposition of tensors,” J. Math. Sci., 174, No. 5, 627–640 (2011).zbMATHCrossRefGoogle Scholar
  40. 40.
    A. P. Norden, Spaces with Affine Connections [in Russian], Nauka, Moscow (1976).Google Scholar
  41. 41.
    A. Z. Petrov, “Modeling of physical fields,” in: Gravitation and General Relativity [in Russian], 4-5, Kazan Univ. (1968), pp. 7–21.Google Scholar
  42. 42.
    A. Z. Petrov, New Methods in the General Theory of Relativity [in Russian], Nauka, Moscow (1966).Google Scholar
  43. 43.
    Ž. Radulovič, J. Mikeš, and M. L. Gavril’chenko, Geodesic Mappings and Deformtions of Riemannian Spaces [in Russian], CID, Podgorica, Odessa State Univ. (1997).Google Scholar
  44. 44.
    N. S. Sinyukov, “Almost geodesic mappings of affinely connected and Riemannian spaces,” Dokl. Akad Nauk SSSR, 151, 781–782 (1963).MathSciNetzbMATHGoogle Scholar
  45. 45.
    N. S. Sinyukov, “Almost geodesic mappings of affinely connected spaces and e-structures,” Mat. Zametki, 7, No. 4, 449–459 (1970).MathSciNetzbMATHGoogle Scholar
  46. 46.
    N. S. Sinyukov, “Infinitesimal almost geodesic transformations of affinely connected spaces and Riemannian spaces,” Ukr. Geom. Sb., 9, 86–95 (1970).MathSciNetzbMATHGoogle Scholar
  47. 47.
    N. S. Sinyukov, Theory of geodesic mappings of Riemannian spaces and its generalizations [in Russian], thesis, Kiev (1971).Google Scholar
  48. 48.
    N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).zbMATHGoogle Scholar
  49. 49.
    N. S. Sinyukov, “Almost geodesic mappings of affinely connected and Riemannian spaces,” J. Sov. Math., 25, No. 4, 1235–1249 (1984).zbMATHCrossRefGoogle Scholar
  50. 50.
    N. S. Sinyukov, Pronciples of the theory of almost geodesic mappings of Riemannian spaces “in the whole” [in Russian], preprint VINITI No. 562-91B (1991).Google Scholar
  51. 51.
    N. S. Sinyukov, I. N. Kurbatova, and J.Mikeš, Holomorphically Projective Mappings of Kählerian Spaces [in Russian], Odessa State Univ., Odessa (1985).Google Scholar
  52. 52.
    N. S. Sinyukov and E. N. Sinyukova, “On holomorphically projective mappings of special Kählerian spaces,” Mat. Zametki, 36, No. 3, 417–423 (1984).MathSciNetzbMATHGoogle Scholar
  53. 53.
    V. S. Sobchuk, “Intrinsic almost geodesic mappings,” Izv. Vyssh. Uchebn. Zaved. Mat., 5, 62–64 (1989).MathSciNetzbMATHGoogle Scholar
  54. 54.
    V. S. Sobchuk, “Almost geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces,” Mat. Zametki, 17, No. 5, 757–763 (1975).MathSciNetzbMATHGoogle Scholar
  55. 55.
    A. S. Solodovnikov, “Projective transformations of Riemannian spaces,” Usp. Mat. Nauk (N.S.), 11, No. 4 (70), 45–116 (1956).Google Scholar
  56. 56.
    H. Chudá and J. Mikeš, “Geodesic and F2-planar mappings under certain initial conditions,” Proc. Int. Geom. Center 2008, 1, Nos. 1–2, 159–167 (2009).Google Scholar
  57. 57.
    V. M. Chernyshenko, “Affinely connected spaces with complexes of geodesics,” Nauch. Zap. Dnepropetr. Univ., 55, No. 6, 105–110 (1961).Google Scholar
  58. 58.
    V. M. Chernyshenko, “Spaces with special complexes of geodesic lines,” Tr. Semin. Vekt. Tenz. Anal., 253–268 (1961).Google Scholar
  59. 59.
    V. S. Shadny, “Almost geodesic mappings of Riemannian spaces onto spaces of constant curvature,” Mat. Zametki, 25, No. 2, 293–296 (1979).MathSciNetGoogle Scholar
  60. 60.
    Ya. L. Shapiro, “Geodesic direction fields and projective path systems,” Mat. Sb., 36, 125–148 (1955).MathSciNetGoogle Scholar
  61. 61.
    A. P. Shirokov, “Space over algebras and their appkications,” J. Math. Sci., 108, No. 2, 232–248 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    M. Shiha, Geodesic and holomorphically projective mappings of parabolically Kählerian spaces [in Russian], Ph.D. thesis, Moscow State Pedag. Inst., Moscow (1992).Google Scholar
  63. 63.
    N. V. Yablonskaya, Almost geodesic mappings of affinely connected spaces with torsion [in Russian], preprint VINITI No. 2190-79Dep, 19.06.1979.Google Scholar
  64. 64.
    N. V. Yablonskaya, Invariant geometric objects of almost geodesic mappings π 2 of general affinely connected spaces [in Russian], preprint VINITI No. 543-80Dep, 12.02.1980.Google Scholar
  65. 65.
    N. V. Yablonskaya, “Some classes of almost geodesic mappings of general affinely connected spaces,” Ukr. Geom. Sb., 27, 120–124 (1984).MathSciNetzbMATHGoogle Scholar
  66. 66.
    N. V. Yablonskaya, “Special groups of almost geodesic transformations of affinely connected spaces,” Izv. Vyssh. Uchebn. Zaved. Mat., 1, 78–80 (1986).MathSciNetGoogle Scholar
  67. 67.
    A. Adamów, “On reduced almost geodesic mappings in Riemannian spaces,” Demonstr. Math., 15, 925–934 (1982).MathSciNetzbMATHGoogle Scholar
  68. 68.
    M. Afwat and A. Švec, “Global differential geometry of hypersurfaces,” Rozpr. Česk. Akad. Ved, Rada Mat. Prir. Ved, 88, No. 7 (1978).Google Scholar
  69. 69.
    A. V. Aminova, “Projective transformations of pseudo-Riemannian manifolds,” J. Math. Sci., 113, No. 3, 367–470 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    V. E. Berezovski, “On special almost geodesic mappings of the type π 1,” in: Proc. Satelite Conf. of ICM in Berlin, Brno (1998), p. 7.Google Scholar
  71. 71.
    V. E. Berezovski and J. Mikeš, “On classification of almost geodesic mappings of affineconnected spaces,” in: Proc. Conf. “Differential Geometry and Its Applications,” Dubrovnik, 1988, Dubrovnik (1989), pp. 41–48.Google Scholar
  72. 72.
    V. E. Berezovski and J. Mikeš, “On a classification of almost geodesic mappings of affine connection spaces,” Acta Univ. Palacki, Fac. Rerum Nat. Math., 35, 21–24 (1996).MathSciNetzbMATHGoogle Scholar
  73. 73.
    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of type π 1 which maintain a system n-orthogonal hypersurfaces,” in: Proc. Conf. on Differ. Geom. Budapest, Budapest (1996), p. 21.Google Scholar
  74. 74.
    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of the type π1 of Riemannian spaces preserving a system n-orthogonal hypersurfaces,” Rend. Circ. Mat. Palermo, II. Suppl., 59, 103–108 (1999).MathSciNetGoogle Scholar
  75. 75.
    V. E. Berezovski and J. Mikeš, “On special almost geodesic mappings of type π1 of spaces with affine connection,” Acta Univ. Palacki, Fac. Rerum Nat. Math., 43, 21–26 (2004).MathSciNetzbMATHGoogle Scholar
  76. 76.
    V. E. Berezovski and J. Mikeš, “On special almost geodesic mappings of type π1 of spaces with affine connection,” in: Proc. 11 Math. Conf. Kiev, Kiev (2006), p. 320.Google Scholar
  77. 77.
    V. E. Berezovski and J. Mikeš, “On fundamental equations in Cauchy-type form of special almost geodesic mappings of type π1,” in: Proc. 12 Math. Conf. Kiev, Kiev (2008), p. 500.Google Scholar
  78. 78.
    V. E. Berezovski and J. Mikeš, “On special case of almost geodesic mappings of spaces with affine connection that preserve the Ricci tensor,” Proc. 13 Math. Conf. Kiev, Kiev (2010), p. 55.Google Scholar
  79. 79.
    V. E. Berezovski and J. Mikeš, “On almost geodesic mappings of type π1 which preserve northogonal system of hyperplanes of Riemannian spaces,” in: Proc. Int. Conf. “Geometry in Odessa 2010,” Odessa (2010), p. 71.Google Scholar
  80. 80.
    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Canonical almost geodesic mappings of type π1 onto pseudo-Riemannian manifolds,” in: Proc. Int. Conf. “Differential Geometry and Its Applications,” Olomouc, August 2007, World Scientific (2008), pp. 65–76.Google Scholar
  81. 81.
    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Almost geodesic mappings onto generalized Ricci-symmetric manifolds,” in: Proc. 9 Int. Conf. Aplimat 2010, Bratislava (2010).Google Scholar
  82. 82.
    V. E. Berezovski, J. Mikeš, A. Vanžurová, “Almost geodesic mappings onto generalized Riccisymmetric manifolds,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 26, No. 2, 221–230 (2010).zbMATHGoogle Scholar
  83. 83.
    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Fundamental PDEs of canonical almost geodesic mappings of type \( {\tilde{\pi}}_1 \),” arXiv:1006.3200 (2010).Google Scholar
  84. 84.
    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “On a class of curvature preserving almost geodesic mappings of manifolds with affine connection,” in: Proc. 10 Int. Conf. Aplimat 2011, Bratislava (2011), pp. 623–628.Google Scholar
  85. 85.
    V. E. Berezovski, J. Mikeš, and A. Vanžurová, “Fundamental PDEs of canonical almost geodesic mappings of type π1,” Bull. Malays. Math. Sci. Soc. (2), 37, No. 3, 647–659 (2014).Google Scholar
  86. 86.
    H. W. Brinkmann, “Einstein spaces which are mapped conformally on each other,” Math. Ann., 94, 119–145 (1925).MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    O. Chepurna and I. Hinterleitner, “On the mobility degree of (pseudo-) Riemannian spaces with respect to concircular mappings,” Miskolc Math. Notes, 14, No. 2, 561–568 (2013).MathSciNetzbMATHGoogle Scholar
  88. 88.
    H. Chudá and J. Mikeš, “F-Planar mappings with certain initial conditions,” in: Proc. 5 Int. Conf. Aplimat 2006, Bratislava (2006), pp. 83–88.Google Scholar
  89. 89.
    H. Chudá and J. Mikeš, “First quadratic integral of geodesics with certain initial conditions,” in: Proc. 6 Int. Conf. Aplimat 2007, Bratislava (2007), pp. 85–88.Google Scholar
  90. 90.
    H. Chudá, M. Chodorová, and J. al Lami Raad, “On holomorphically projective mappings onto almost Hermitian spaces,” Aplimat J. Appl. Math., 4, 667–672 (2011).Google Scholar
  91. 91.
    H. Chudá, M. Chodorová, and M. Shiha, “On composition of conformal and holomorphically projective mappings between conformally Kählerian spaces,” Aplimat J. Appl. Math., 5, No. 3, 91–96 (2012).Google Scholar
  92. 92.
    H. Chudá and J. Mikeš, “On geodesic mappings with certain initial conditions,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 26, No. 2, 337–341 (2010).MathSciNetzbMATHGoogle Scholar
  93. 93.
    H. Chudá and J. Mikeš, “Conformally geodesic mappings satisfying a certain initial condition,” Arch. Math. (Brno), 47, No. 5, 389–394 (2011).MathSciNetzbMATHGoogle Scholar
  94. 94.
    H. Chudá, J. Mikeš, and M. Chodorová, “On holomorphically projective mappings with certain initial conditions,” Aplimat J. Appl. Math., 673–678 (2011).Google Scholar
  95. 95.
    H. Chudá and M. Shiha, “Conformally holomorphically projective mappings satisfying a certain initial condition,” Miskolc Math. Notes, 14, No. 2, 569–574 (2013).MathSciNetzbMATHGoogle Scholar
  96. 96.
    L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton (1926).zbMATHGoogle Scholar
  97. 97.
    L. P. Eisenhart, Non-Riemannian Geometry, Princeton Univ. Press, Princeton (1926).zbMATHGoogle Scholar
  98. 98.
    S. Fučík and A. Kufner, Nonlinear Differential Equations [in Czech], TKI, SNTL, Praha (1978).zbMATHGoogle Scholar
  99. 99.
    A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., 123, 35–58 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    I. Hinterleitner, “Special mappings of equidistant spaces,” Aplimat J. Appl. Math., 2, 31–36 (2008).Google Scholar
  101. 101.
    I. Hinterleitner, “On holomorphically projective mappings of e-Kähler manifolds,” Arch. Math. (Brno), 48, No. 5, 333–338 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    I. Hinterleitner, “Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature,” Publ. Inst. Math., 94, 125–130 (2013).MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    I. Hinterleitner and J. Mikeš, “On F-planar mappings of spaces with affine connections,” Note Mat., 27, No. 1, 111–118 (2007).MathSciNetzbMATHGoogle Scholar
  104. 104.
    I. Hinterleitner and J. Mikeš, “Projective equivalence and manifolds with equiaffine connection,” J. Math. Sci., 177, No. 4, 546–550 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    I. Hinterleitner and J. Mikeš, “On fundamental equations of geodesic mappings and their generalizations,” J. Math. Sci., 174, No. 5, 537–554 (2011).zbMATHCrossRefGoogle Scholar
  106. 106.
    I. Hinterleitner and J. Mikeš, “On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds,” Arch. Math. (Brno), 49, No. 5, 295–302 (2013).MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    I. Hinterleitner and J. Mikeš, “Geodesic mappings and Einstein spaces,” in: Geometric Methods in Physics, 331–335 (2013); arXiv:1201.2827v1 [math.DG].Google Scholar
  108. 108.
    I. Hinterleitner and J. Mikeš, “Geodesic mappings of (pseudo) Riemannian manifolds preserve class of differentiability,” Miskolc Math. Notes, 14, No. 2, 575–582 (2013).MathSciNetzbMATHGoogle Scholar
  109. 109.
    I. Hinterleitner, J. Mikeš, and P. Peška, “On F 2ε -planar mappings of (pseudo) Riemannian manifolds,” Arch. Math. (Brno), 50, No. 5 287–295 (2014).Google Scholar
  110. 110.
    J. Hrdina, “Almost complex projective structures and their morphisms,” Arch. Math. (Brno), 45, No. 4 255–264 (2009).MathSciNetzbMATHGoogle Scholar
  111. 111.
    S. Ishihara, “Holomorphically projective changes and their groups in an almost complex manifold,” Tohoku Math. J., II. Ser., 9, 273–297 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vols. 1, 2, Interscience, New York–London (1963, 1969).Google Scholar
  113. 113.
    I. N. Kurbatova, “HP-mappings of H-spaces,” Ukr. Geom. Sb., 27, 75–83 (1984).MathSciNetzbMATHGoogle Scholar
  114. 114.
    J. al Lami Raad, J. Mikeš, and M. škodová, “On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces,” Arch. Math. (Brno), 42, suppl., 291-299 (2006).Google Scholar
  115. 115.
    T. Levi-Civita, “Sulle transformationi delle equazioni dinamiche,” Ann. Mat. Milano, 24, Ser. 2, 255–300 (1886).Google Scholar
  116. 116.
    J. Mikeš, “F-Planar mappings and transformations,” in: Proc. Conf. “Differential Geometry and Its Applications,” Brno, August 24–30, 1986 Brno (1986), pp. 245–254.Google Scholar
  117. 117.
    J. Mikeš, “Global geodesic mappings and their generalizations for compact Riemannian spaces,” in: Proc. Conf. “Differential Geometry and Its Applications,” Opava, 1992, Opava (1992), pp. 143–149.Google Scholar
  118. 118.
    J. Mikeš, “Special F-planar mappings of affinely connected spaces onto Riemannian spaces,” Vestn. Mosk. Univ., Ser. Mat., 3, 18–24 (1994).zbMATHGoogle Scholar
  119. 119.
    J. Mikeš, “Geodesic mappings of affinely connected and Riemannian spaces,” J. Math. Sci., 78, No. 3, 311–333 (1996) .MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    J. Mikeš, “Holomorphically projective mappings and their generalizations,” J. Math. Sci., 89, No. 3, 1334–1353 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    J. Mikeš, V. Kiosak, and A. Vanžurová, Geodesic Mappings of Manifolds with Affine Connection, Palacky Univ. Press, Olomouc (2008).zbMATHGoogle Scholar
  122. 122.
    J. Mikeš, S. Báscó, and V. E. Berezovski, “Geodesic mappings of weakly Berwald spaces and Berwald spaces onto Riemannian spaces,” Int. J. Pure Appl. Math., 45, No. 3, 413–418 (2008).MathSciNetzbMATHGoogle Scholar
  123. 123.
    J. Mikeš and V. E. Berezovski, “Geodesic mappings of affinely connected spaces onto Riemannian spaces,” in: Proc. Conf. “Differential Geometry and Its Applications,” Eger, Hungary, August 20–25, 1989, Publ. Comp. Colloq. Math. Soc. J. Bolyai, 56, 491–494 (1992).Google Scholar
  124. 124.
    J. Mikeš and M. Chodorová, “On concircular and torse-forming vector fields on compact manifolds,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 27 (2010).Google Scholar
  125. 125.
    J. Mikeš, H. Chudá, and I. Hinterleitner, “Conformally holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition,” Int. J. Geom. Methods Mod. Phys., 11, No. 5, 1450044 (2014).MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    J. Mikeš, O. Pokorná, and H. Vavříková, “On almost geodesic mappings pi 2(e), e = ±1,” in: Proc. Int. Conf. Aplimat, Part II, Bratislava (2005), pp. 315–321.Google Scholar
  127. 127.
    J. Mikeš and L. Rachunek, “T-Semisymmetric spaces and concircular vector fields,” Rend. Circ. Mat. Palermo, II. Suppl. Ser., 69, 187–193 (2002).MathSciNetzbMATHGoogle Scholar
  128. 128.
    J. Mikeš and M. Škodová, “Concircular vector fields on compact manifolds with affine connections,” Publ. RSME, 10, 302–307 (2007).zbMATHGoogle Scholar
  129. 129.
    J. Mikeš, A. Vanžurová, and I. Hinterleitner, Geodesic Mappings and Some Generalizations, Publ. Palacky Univ., Olomouc (2009).zbMATHGoogle Scholar
  130. 130.
    T. Otsuki and Y. Tashiro, “On curves in Kählerian spaces,” Math. J. Okayama Univ., 4, 57–78 (1954).MathSciNetzbMATHGoogle Scholar
  131. 131.
    M. Prvanović, “Holomorphically projective transformations in a locally product space,” Math. Balk., 1, 195–213 (1971).MathSciNetzbMATHGoogle Scholar
  132. 132.
    L. Rachunek and J. Mikeš, “On tensor fields semiconjugated with torse-forming vector fields,” Acta Univ. Palacki, Fac. Rerum Nat. Math., 44, 151–160 (2005).MathSciNetzbMATHGoogle Scholar
  133. 133.
    M. Shiha, “On the theory of holomorphically projective mappings of parabolically Kählerian spaces,” in: Proc. Conf. “Differential Geometry and Its Applications, Opava, 1992, Math. Publ., 1, Silesian Univ. Opava (1993), pp. 157–160.Google Scholar
  134. 134.
    M. Shiha and J. Mikeš, “On holomorphically projective flat parabolically Kählerian spaces,” Contemp. Geom. Related Topics. Čigoja Publ. Comp., 250, 467–474 (2006).zbMATHGoogle Scholar
  135. 135.
    M. Škodová, J. Mikeš, and O. Pokorná, “On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces,” Rend. Circ. Mat. Palermo. Ser. II, 75, 309–316 (2005).zbMATHGoogle Scholar
  136. 136.
    V. S. Sobchuk, J. Mikeš, and O. Pokorná, “On almost geodesic mappings π 2 between semisymmetric Riemannian spaces,” Novi Sad J. Math., 29, No. 3, 309–312 (1999).MathSciNetzbMATHGoogle Scholar
  137. 137.
    M. S. Stanković, M. Lj. Zlatanović, and Lj. S. Velimirović, “Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind,” Czech. Math. J., 60, No. 3, 635–653 (2010).zbMATHCrossRefGoogle Scholar
  138. 138.
    M. S. Stanković, M. Lj. Zlatanović, and Lj. S. Velimirović, “Equitorsion holomorphically projective mappings of generalized Kählerian space of the second kind,” Int. Electron. J. Geom., 3, No. 2, 26–39 (2010).MathSciNetzbMATHGoogle Scholar
  139. 139.
    M. S. Stanković, S. M. Minćić, and Lj. S. Velimirović, “On equitorsion holomorphically projective mappings of generalized Kählerian spaces,” Czech. Math. J., 54, No. 3, 701–715 (2004).zbMATHCrossRefGoogle Scholar
  140. 140.
    M. S. Stanković, S. M. Minćić, Lj. S. Velimirović, “On holomorphically projective mappings of generalized Kählerian spaces,” Mat. Vesn., 54, Nos. 3–4, 195–202 (2002).zbMATHGoogle Scholar
  141. 141.
    Y. Tashiro, “On a holomorphically projective correspondence in an almost complex space,” Math. J. Okayama Univ., 6, 147–152 (1957).MathSciNetzbMATHGoogle Scholar
  142. 142.
    G. Vrănceanu, Lecons de Géométrie Différentielle, Acad. RPR, Bucharest (1957).zbMATHGoogle Scholar
  143. 143.
    K. Yano, Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press (1965).Google Scholar
  144. 144.
    K. Yano, “Concircular geometry, I, II, III, IV, V,” Proc. Imp. Acad. Jpn., 16, 195–200, 345–360, 442–448, 505–511 (1940); 18, 446–451 (1942).Google Scholar
  145. 145.
    K. Yano, “On the torse-forming directions in Riemannian spaces,” Proc. Imp. Acad. Tokyo, 20, 340-345 (1944).MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    K. Yano and S. Bochner, Curvature and Betti Numbers, Ann. Math. Stud., 32, Princeton Univ. Press, Princeton (1953).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Mikeš
    • 1
    Email author
  • V. E. Berezovski
    • 2
  • E. Stepanova
    • 1
  • H. Chudá
    • 3
  1. 1.Palacky UniversityOlomoucCzech Republic
  2. 2.Uman National University of HorticultureUmanUkraine
  3. 3.Tomas Bata University in ZlinZlinCzech Republic

Personalised recommendations