Skip to main content
Log in

On Ergodic Decompositions Related to the Kantorovich Problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let X be a Polish space, \( \mathcal{P} \)(X) be the set of Borel probability measures on X, and T : X → X be a homeomorphism. We prove that for the simplex Dom ⊆ \( \mathcal{P} \)(X) of all T -invariant measures, the Kantorovich metric on Dom can be reconstructed from its values on the set of extreme points. This fact is closely related to the following result: the invariant optimal transportation plan is a mixture of invariant optimal transportation plans between extreme points of the simplex. The latter result can be generalized to the case of the Kantorovich problem with additional linear constraints an the class of ergodic decomposable simplices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York (1985).

    MATH  Google Scholar 

  2. L. Ambrosio and N. Gigli, “A user’s guide to optimal transport,” Lect. Notes Math., 2062, 1–155 (2013).

    Article  MathSciNet  Google Scholar 

  3. M. Beiglböck and C. Griessler, “An optimality principle with applications in optimal transport,” arXiv:1404.7054 (2014).

  4. V. Bogachev, Measure Theory, Vol. 2, Springer, New York (2007).

    Book  MATH  Google Scholar 

  5. V. I. Bogachev and A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives,” Russian Math. Surveys, 67, No. 5(785), 3–110 (2012).

    MathSciNet  MATH  Google Scholar 

  6. O. Chodosh, “Optimal transport and Ricci curvature: Wasserstein space over the interval,” arXiv:1105.2883 (2011).

  7. M. Colombo and S. Di Marino, “Equality between Monge and Kantorovich multimarginal problems with Coulomb cost,” Ann. Mat. Pura Appl., 194, No. 2, 307–320 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. I. Cortez and J. Rivera-Letelier, “Choquet simplices as spaces of invariant probability measures on post-critical sets,” Ann. Inst. H. Poincaré Anal. Non Linéare, 27, No. 1, 95–115 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Downarowicz, “The Choquet simplex of invariant measures for minimal flows,” Israel J. Math., 74, No. 2–3, 241–256 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. B. Dynkin, “Sufficient statistics and extreme points,” Ann. Probab., 6, No. 5, 705–730 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Einsiedler and T. Ward, Ergodic Theory: With a View Towards Number Theory, Springer-Verlag (2011).

  12. M. Gaudard and D. Hadwin, “Sigma-algebras on spaces of probability measures,” Scand. J. Statist., 16, No. 2, 169–175 (1989).

    MathSciNet  MATH  Google Scholar 

  13. C. Himmelberg, “Measurable relations,” Fund. Math., 87, No. 1, 53–72 (1975).

    MathSciNet  MATH  Google Scholar 

  14. J. Kerstan and A. Wakolbinger, “Ergodic decomposition of probability laws,” Z. Wahrscheinlichkeitstheor. Verw. Geb., 56, No. 3, 339—414 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. V. Kolesnikov and D. Zaev, “Optimal transportation of processes with infinite Kantorovich distance. Independence and symmetry,” arXiv:1303.7255 (2013).

  16. A. Moameni, “Invariance properties of the Monge–Kantorovich mass transport problem,” arXiv:1311.7051 (2013).

  17. K. R. Parthasarathy, Probability Measures on Metric Spaces, AMS Chelsea Publishing (1967).

  18. R. Phelps, Lectures on Choquet’s Theorem, Springer-Verlag, Berlin–Heidelberg (2001).

    Book  MATH  Google Scholar 

  19. U. Rieder, “Measurable selection theorems for optimization problems,” Manuscripta Math., 24, No. 1, 1151–131 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Vershik, “Kantorovich metric: initial history and little-known applications,” J. Math. Sci., 133, No. 4, 1410–1417 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. M. Vershik, P. B. Zatitskiy, and F. V. Petrov, “Virtual continuity of measurable functions and its applications,” Russian Math. Surveys, 69, No. 6(420), 81–114 (2014).

    MathSciNet  MATH  Google Scholar 

  22. A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries,” J. Math. Sci., 209, No. 6, 860–873 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin (2009).

    Book  MATH  Google Scholar 

  24. D. Zaev, On the Monge–Kantorovich problem with additional linear constraints,” Mat. Zametki, 98, No. 5, 664–683 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zaev.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 437, 2015, pp. 100–130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaev, D.A. On Ergodic Decompositions Related to the Kantorovich Problem. J Math Sci 216, 65–83 (2016). https://doi.org/10.1007/s10958-016-2888-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2888-9

Keywords

Navigation