Skip to main content
Log in

Orthogonal Pairs and Mutually Unbiased Bases

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The goal of our article is a study of related mathematical and physical objects: orthogonal pairs in sl(n) and mutually unbiased bases inn . An orthogonal pair in a simple Lie algebra is a pair of Cartan subalgebras that are orthogonal with respect to the Killing form. The description of orthogonal pairs in a given Lie algebra is an important step in the classification of orthogonal decompositions, i.e., decompositions of the Lie algebra into a direct sum of Cartan subalgebras pairwise orthogonal with respect to the Killing form. One of the important notions of quantum mechanics, quantum information theory, and quantum teleportation is the notion of mutually unbiased bases in the Hilbert spacen . Two orthonormal bases {e i } n i = 1 , {f j } n j = 1 are mutually unbiased if and only if \( {\left|\left\langle {e}_i\left|{f}_j\right.\right\rangle \right|}^2=\frac{1}{n} \) for any i, j = 1,…, n. The notions of mutually unbiased bases inn and orthogonal pairs in sl(n) are closely related. The problem of classification of orthogonal pairs in sl(n) and the closely related problem of classification of mutually unbiased bases inn are still open even for the case n = 6. In this article, we give a sketch of our proof that there is a complex four-dimensional family of orthogonal pairs in sl(6). This proof requires a lot of algebraic geometry and representation theory. Further, we give an application of the result on the algebraic geometric family to the study of mutually unbiased bases. We show the existence of a real four-dimensional family of mutually unbiased bases in6 , thus solving a long-standing problem. Bibliography: 24 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bondal and I. Zhdanovskiy, “Representation theory for system of projectors and discrete Laplace operator,” Preprint of IPMU, IPMU13-0001 (2013).

  2. A. Bondal and I. Zhdanovskiy, “Simplectic geometry of unbiasedness and critical points of a potential,” arxiv:1507.00081.

  3. A. Bondal and I. Zhdanovskiy, “Orthogonal pairs for Lie algebra sl(6),” Preprint of IPMU, IPMU14-0296 (2014).

  4. P. O. Boykin, M. Sitharam, P. H. Tiep, and P. Wocjan, “Mutually unbiased bases and orthogonal decompositions of Lie algebras,” Quantum Inf. Comput., 7, 371–382 (2007).

    MathSciNet  MATH  Google Scholar 

  5. M. D. de Burgh, N. K. Landford, A. C. Doherty, and A. Gilchrist, “Choice of measurement sets in qubit tomography,” Phys. Rev. A, 78, 052122 (2008).

    Article  Google Scholar 

  6. W. Crawley-Boevey, “Noncommutative deformations of Kleinian singularities,” Duke Math. J., 92, No. 3, 605–635 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Crawley-Boevey, “Geometry of the moment map for representations of quivers,” Compos. Math., 126, 257–293 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Durt, B.-G. Englert, I. Bengtsson, and K. Zyczkowski, “On mutually unbiased bases,” Int. J. Quantum Inform., 8, 535–640 (2010).

    Article  MATH  Google Scholar 

  9. S. N. Filippov and V. I. Man’ko, “Mutually unbiased bases: tomography of spin states and the star-product scheme,” Phys. Scripta, 2011, T143.

  10. W. L. Gan and V. Ginzburg, “Deformed preprojective algebras and symplectic reflection for wreath products,” J. Algebra, 283, 350–363 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Haagerup, “Orthogonal maximal abelian *-subalgebras of the n×n matrices and cyclic n-roots,” in: Operator Algebras and Quantum Field Theory, International Press, Cambridge, Massachusetts (1996), pp. 296–322.

  12. C. D. Hacon, J. McKernan, and C. Xu, “On the birational automorphisms of varieties of general type,” Ann. Math., 177, 1077–1111 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. N. Ivanov, “An analogue of Wagner’s theorem for orthogonal decompositions of the algebra of matrices M n (C),” Uspekhi Mat. Nauk, 49, No. 1(225), 215–216 (1994).

  14. A. I. Kostrikin, T. A. Kostrikin, and V. A. Ufnarovskii, “Orthogonal decompositions of simple Lie algebras (type A n ),” Trudy Mat. Inst. Steklov., 158, 105–120 (1981).

    MathSciNet  MATH  Google Scholar 

  15. A. I. Kostrikin, I. A. Kostrikin, and V. A. Ufnarovskii, “On the uniqueness of orthogonal decompositions of Lie algebras of type A n and C n ,” Mat. Issled., 74, 80–105 (1983).

    MathSciNet  MATH  Google Scholar 

  16. A. I. Kostrikin and P. H. Tiep, Orthogonal Decompositions and Integral Lattices, Walter de Gruyter (1994).

  17. G. Lima, L. Neves, R. Guzman, E. S. Gomez, W. A. T. Nogueira, A. Delgado, A. Vargas, and C. Saavedra, “Experimental quantum tomography of photonic qudits via mutually unbiased basis,” Optics Express, 19, No. 4, 3542–3552 (2011).

  18. M. Matolcsi and F. Szöllȍsi, “Towards a classification of 6×6 complex Hadamard matrices,” Open. Syst. Inf. Dyn., 15, 93–108 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Nomura, “Type II matrices of size five,” Graphs Combin., 15, No. 1, 79–92 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. qig.itp.uni-hannover.de/qiproblems/Main Page.

  21. M. B. Ruskai, “Some connections between frames, mutually unbiased bases, and POVM’s in quantum information theory,” Acta Appl. Math., 108, No. 3, 709–719 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Szöllȍsi, “Complex Hadamard matrices of order 6: a four-parameter family,” J. London Math. Soc., 85, No. 3, 616–632 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Thompson, “A conjugacy theorem for E 8,” J. Algebra, 38, No. 2, 525–530 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Tadej and K. Zyczkowski, “Defect of a unitary matrix,” Linear Algebra Appl., 429, 447–481 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zhdanovskiy.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 437, 2015, pp. 35–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondal, A., Zhdanovskiy, I. Orthogonal Pairs and Mutually Unbiased Bases. J Math Sci 216, 23–40 (2016). https://doi.org/10.1007/s10958-016-2885-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2885-z

Keywords

Navigation