Skip to main content
Log in

On the Littlewood–Offord Problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper deals with studying a connection between the Littlewood–Offord problem and estimating the concentration functions of some symmetric infinitely divisible distributions. Some multivariate generalizations of Arak’s results (1980) are given. They establish a relationship of the concentration function of the sum and arithmetic structure of supports of the distributions of independent random vectors for arbitrary distributions of summands. Bibliography: 21 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Arak, “On the approximation by the accompanying laws of n-fold convolutions of distributions with nonnegative characteristic functions,” Teor. Veroyatn. Primen., 25, 225–246 (1980).

    MathSciNet  MATH  Google Scholar 

  2. T. V. Arak, “On the convergence rate in Kolmogorov’s uniform limit theorem. I,” Teor. Veroyatn. Primen., 26, 225–245 (1981).

    MathSciNet  MATH  Google Scholar 

  3. T. V. Arak and A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables,” Proc. Steklov Inst. Math., 174, 1–216 (1988).

    MathSciNet  Google Scholar 

  4. Yu. S. Eliseeva, “Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables,” Zap. Nauchn. Semin. POMI, 412, 121–137 (2013).

    Google Scholar 

  5. Yu. S. Eliseeva, F. Gӧtze, and A. Yu. Zaitsev, “Estimates for the concentration functions in the Littlewood–Offord problem,” Zap. Nauchn. Semin. POMI, 420, 50–69 (2013).

    Google Scholar 

  6. Yu. S. Eliseeva and A. Yu. Zaitsev, “Estimates for the concentration functions of weighted sums of independent random variables,” Teor. Veroyatn. Primen., 57, 768–777 (2012).

    Article  MathSciNet  Google Scholar 

  7. C.-G. Esséen, “On the Kolmogorov–Rogozin inequality for the concentration function,” Z. Wahrsch. Verw. Gebiete, 5, 210–216 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  8. C.-G. Esséen, “On the concentration function of a sum of independent random variables,” Z. Wahrsch. Verw. Gebiete, 9, 290–308 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Friedland and S. Sodin, “Bounds on the concentration function in terms of Diophantine approximation,” C. R. Math. Acad. Sci. Paris, 345, 513–518 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Halász, “Estimates for the concentration function of combinatorial number theory and probability,” Period. Math. Hungar., 8, 197–211 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Hengartner and R. Theodorescu, Concentration Functions, Academic Press, New York (1973).

    MATH  Google Scholar 

  12. J. E. Littlewood and A. C. Offord, “On the number of real roots of a random algebraic equation,” Rec. Math. N.S., 12, 277–286 (1943).

  13. H. Nguyen and V. Vu, “Optimal inverse Littlewood–Offord theorems,” Adv. Math., 226, 5298–5319 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Nguyen and V. Vu, “Small probabilities, inverse theorems and applications,” in: Erdӧs Centennial Proceeding, Eds. L. Lovász et. al., Springer, (2013), pp. 409–463.

  15. V. V. Petrov, Sums of Independent Random Variables [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  16. M. Rudelson and R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices,” Adv. Math., 218, 600–633 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Rudelson and R. Vershynin, “The smallest singular value of a random rectangular matrix,” Comm. Pure Appl. Math., 62, 1707–1739 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Tao and V. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices,” Ann. Math., 169, 595–632 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Tao and V. Vu, “From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices,” Bull. Amer. Math. Soc., 46, 377–396 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Vershynin, “Invertibility of symmetric random matrices,” Random Struct. Alg., 44, No. 2, 135–182 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Yu. Zaitsev, “Multidimensional generalized method of triangular functions,” Zap. Nauchn. Semin. LOMI, 158, 81–104 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Eliseeva.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 431, 2014, pp. 72–81.

Translated by A. Yu. Zaitsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseeva, Y.S., Zaitsev, A.Y. On the Littlewood–Offord Problem. J Math Sci 214, 467–473 (2016). https://doi.org/10.1007/s10958-016-2790-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2790-5

Keywords

Navigation