Skip to main content
Log in

On one class of nonself-adjoint operators associated with differential equations of fractional order

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A method for studying the nonself-adjoint integral operators associated with differential equations of fractional order is presented. Within this method, in particular, some estimates for the eigenfunctions and eigenvalues of a boundary-value problem for a fractional oscillatory equation are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Aleroev, “Boundary-value problems for differential equations of fractional order,” Sib. Electr. Mat. Izv., 10, 41–55 (2013).

    MathSciNet  MATH  Google Scholar 

  2. M. M. Dzhrbashyan, “Boundary-value problem for a differential operator of the Sturm–Liouville type of fractional order,” Izv. Akad. Nauk Arm. SSR, Ser. Mat., 5, No. 2, 71–96 (1970).

    Google Scholar 

  3. M. M. Malamud and L. L. Oridoroga, “An analog of the Birkhoff theorem and the completeness of eigenunctions for differential equations of fractional order,” Ross. Zh. Mat. Fiz., 8, No. 3, 287–308 (2001).

    MathSciNet  MATH  Google Scholar 

  4. T. S. Aleroev, “The Sturm–Liouville problem for a second-order differential equation with fractional derivatives in lower terms,” Diff. Urav., 18, No. 2, 341–342 (1982).

    MathSciNet  MATH  Google Scholar 

  5. T. S. Aleroev and H. T. Aleroeva, “The Sturm–Liouville problem for a second-order differential equation with fractional derivatives in lower terms,” Izv. Vyssh. Uch. Zav. Mat., 10, 3–12 (2014).

    MathSciNet  MATH  Google Scholar 

  6. T. S. Aleroev, “On a boundary-value problem for a differential operator of fractional order,” Diff. Urav., 34, No. 1, 123 (1998).

    MathSciNet  MATH  Google Scholar 

  7. E. R. Kaufmann, “Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem,” Discr. Contin. Dyn. Syst. A, 2009, 416–423 (2009).

    MathSciNet  MATH  Google Scholar 

  8. A. M. Nakhushev, Fractional Calculus and Its Application [in Russian], Fizmatlit, Moscow, 2003.

    MATH  Google Scholar 

  9. T. S. Aleroev, “On the completeness of eigenfunctions of a differential operator of fractional order,” Differ. Equ., 36, No. 6, 829–830 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. S. Aleroev, Boundary-Value Problems for Differential Equations with Fractional Derivatives [in Russian], Doctoral Degree Thesis (Phys.-Math. Sci.), MSU, Moscow, 2000.

  11. T. S. Aleroev, H. T. Aleroeva, Ning-Ming Nie, and Yi-Fa Tang, “Boundary value problems for differential equations of fractional order,” Mem. Diff. Equ. Math. Phys., 49, 19–82 (2010).

  12. T. S. Aleroev and H. T. Aleroeva, “A problem on the zeros of the Mittag-Leffler function and the spectrum of a fractional-order differential operator,” Electr. J. Qual. Theor. Differ. Equ., 25, 1–18 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. Yuan Chengjun, “Multiple positive solutions for (n-1,1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations,” Electr. J. Qual. Theor. Differ. Equ., 36, 1–12 (2010).

    MathSciNet  MATH  Google Scholar 

  14. F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solit., Fract., 7, No. 9, 1461–1477 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. C. Aleroev, “On a class of operators related to differential equations of fractional order,” Sib. Mat. Zh., 46, No. 6, 1201–1207 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. R. Kekharsaeva, A. K. Mikitaev, and T. S. Aleroev, “A model of deformation-strength characteristics of chlorine-containing polyethers on the basis of derivatives of fractional order,” Plast. Massy, 3, 35 (2001).

    Google Scholar 

  17. T. S. Aleroev and A. M. Gachaev, “To the problem of zeros of a function of the Mittag–Leffler type,” in: Proceed. of the Intern. Russia-Uzbekistan Sympos. “Mixed-Type Equations and Related Problems of Analysis and Informatics”, Nal’chik-El’brus, 2003, pp. 14–15.

  18. T. S. Aleroev and H. T. Aleroeva, “Some applications of perturbation theory in fractinal calculus,” Dokl. Adyg. (Cherk.) Mezhd. Akad. Nauk, 10, No. 2, 9–13 (2008).

    MATH  Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995.

    MATH  Google Scholar 

  20. B. V. Loginov, “To the estimate of the exactness of the method of perturbations,” Izv. Akad. Nauk UzbSSR. Ser. Fiz.-Mat. Nauk, 6, 14–19 (1963).

    MathSciNet  Google Scholar 

  21. T. S. Aleroev, Boundary-Value Problems for Differential Equations with Fractional Derivatives [in Russian], Candidate Degree Thesis (Phys.-Math. Sci.), Baku, 1983.

  22. A. Yu. Popov, “On the number of real eigenvalues of a boundary-value problem for a second–order equation with fractional derivative,” Fund. Prikl. Mat., 12, No. 6, 137-–155 (2006).

    Google Scholar 

  23. A. M. Sedletskii and A. Yu. Popov, “Distribution of the roots of Mittag–Leffler functions,” Sovr. Mat. Fund. Napr., 40, 3-–171 (2011).

    MathSciNet  MATH  Google Scholar 

  24. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators, Amer. Math. Soc., Providence, RI, 1969.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temirkhan S. Aleroev.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 12, No. 3, pp. 403–426, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleroev, T.S., Aleroeva, H.T. On one class of nonself-adjoint operators associated with differential equations of fractional order. J Math Sci 214, 147–160 (2016). https://doi.org/10.1007/s10958-016-2765-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2765-6

Keywords

Navigation