Skip to main content
Log in

Degenerately Integrable Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The subject of this paper is degenerate integrability in Hamiltonian mechanics. We start with a short survey of degenerate integrability. The first section contains basic notions. It is followed by a number of examples which include the Kepler system, Casimir models, spin Calogero models, spin Ruijsenaars models, and integrable models on symplectic leaves of Poisson Lie groups. The new results are degenerate integrability of relativistic spin Ruijsenaars and Calogero–Moser systems and the duality between them. Bibliography: 30 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alekseev, E. Meinrenken, and C. Woodward, “Group-valued equivariant localization,” Invent. Math., 140, 327–350 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Ayadi, L. Feher, and T.F. Gorbe, “Superintegrability of rational Ruijsenaars-Schneider systems and their action-angle duals,” J. Geom. Symmetry Phys., 27, 27–44 (2012).

    MathSciNet  MATH  Google Scholar 

  3. F. Calogero, “Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials,” J. Math. Phys., 12, 419–436 (1971).

    Article  MathSciNet  Google Scholar 

  4. B. Enriquez and V. Rubtsov, “Hitchin systems, higher Gaudin operators, and R-matrices,” Math. Res. Lett., 3, 343–357 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Feher and C. Klimyk, “Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction,” Nucl.Phys., B860, 464–515 (2012).

  6. L. Feher and C. Klimcik, “Poisson–Lie interpretation of trigonometric Ruijsenaars duality,” Commun. Math. Phys., 301, 55–104 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Feher and B. G. Pusztai, “Twisted spin Sutherland models from quantum Hamiltonian reduction,” J. Phys. A, 41, 194009 (2008).

    Article  MathSciNet  Google Scholar 

  8. L. Feher and B. G. Pusztai, “Generalized spin Sutherland systems revisited,” Nucl. Phys., B893, 236–256 (2015).

    Article  MathSciNet  Google Scholar 

  9. V. Fock, A. Gorsky, N. Nekrasov, and A. Rubtsov, “Dualities in integrable gauge theories,” JHEP, 0007 (2000), 028.

    Article  MathSciNet  Google Scholar 

  10. V. Fock, “Zur Theorie Des Wasserstoffatoms,” Z. Physik, 98, 145 (1935).

    Article  Google Scholar 

  11. V. Fock and A. A. Rosly, “Flat connections and polyubles,” Teor. Mat. Fiz., 95, 228–238 (1993).

    Article  MathSciNet  Google Scholar 

  12. A. S. Mischenko and A. T. Fomenko, “Generalized Liouville method or integrating Hamiltonian systems,” Functs. Analiz Prilozh., 12, 46–56 1978.

    Google Scholar 

  13. J. Frish, V. Mandrosov, and Y. A. Smorodinsky, M. Uhlir, and P. Winternitz. “On higher symmetries in quantum mechanics,” Physics Letters, 16, 354–356 (1965).

  14. M. I. Gekhtman and M. Z. Shapiro. “Noncommutative and commutative integrability of generic Toda flow in simple Lie algberas,” Comm. Pure Appl. Math., 52, 53–84 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Gibbons and T. Hermsen, “A generalization of the Calogero–Moser system,” Physica, 11D, 337 (1984).

    MathSciNet  Google Scholar 

  16. D. Kazhdan, B. Kostant, and S. Sternberg. “Hamiltonian group actions and dynamical systems of Calogero type,” Comm. Pure Appl. Math., 31, 481–507 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Krichever, O. Babelon, E. Billey, and M. Talon, “Spin Generalization of Calogero–Moser system and the matrix KP equation,” Translations of Amer. Math. Soc., Series 2, Vol. 170, Advances in Mathematical Science, Topics in Topology and Math. Phys., hep-th/9411160 1975.

  18. L. C. Li and P. Xu, “Spin Calogero–Moser systems associated with simple Lie algebras,” C. R. Acad. Sci. Paris, Serie I, 331, 55–61 (2000).

  19. J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations,” Advances Math., 16, 197–220 (1975).

    Article  MATH  Google Scholar 

  20. N. N. Nekhoroshev, “Action-angle variables and their generalizations,” Trans. Moscow Math. Soc., 26, 180–197 (1972).

    Google Scholar 

  21. N. Nekrasov, “Holomorphyc bundles and many-body systems,” CMP, 180, 587–604 (1996).

    MathSciNet  MATH  Google Scholar 

  22. M. A. Olshanetsky and A. M. Perelomov, “Quantum integrable systems related to Lie algebras,” Phys. Rept., 94, 313–404 (1983).

    Article  MathSciNet  Google Scholar 

  23. W. Pauli, “On the hydrogen spectrum from the standpoint of the new quantum mechanics,” Zeitschrift fur Physik, 36, 336–363 (1926).

    Article  MATH  Google Scholar 

  24. N. Reshetikhin, “Integrability of characteristic Hamiltonian systems on simple Lie groups with standard Poisson–Lie structure,” Comm. Math. Phys., 242, 1–29 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Reshetikhin, “Degenerate integrability of the spin Calogero–Moser systems and the duality with the spin Ruijsenaars systems,” Lett. Math. Phys., 63, 55–71 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Ruijsenaars, “Systems of Calogero–Moser type,” in: Proc. of the 1994 CRM Banff Summer School on Particles and Fields, Springer (1999), pp. 251–352

  27. M. Semenov-Tian-Shansky, “Dressing transformations and Poisson group actions,” Publ. Res. Inst. Math. Sci., 21, 1237–1260 (1985).

    Article  MathSciNet  Google Scholar 

  28. B. Sutherland, “Exact results for a many-body problem in one dimension II,” Phys. Rev. A, 5, 1372–1376 (1972).

    Article  Google Scholar 

  29. S. Wojciechowski, “Superintegrability of the Calogero–Moser system,” Phys. Lett. A, 95, 279 (1983).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Reshetikhin.

Additional information

To P. P. Kulish on the occasion of his 70th anniversary

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 433, 2015, pp. 224–245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetikhin, N. Degenerately Integrable Systems. J Math Sci 213, 769–785 (2016). https://doi.org/10.1007/s10958-016-2738-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2738-9

Keywords

Navigation