Skip to main content
Log in

The Five-Vertex Model and Enumerations of Plane Partitions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the five-vertex model on an M ×2N lattice with fixed boundary conditions of special type. We discuss a determinantal formula for the partition function in application to description of various enumerations of N × N × (M − N) boxed plane partitions. It is shown that at the free-fermion point of the model, this formula reproduces the MacMahon formula for the number of boxed plane partitions, while for generic weights (outside the free-fermion point), it describes enumerations with the weight depending on the cumulative number of jumps along vertical (or horizontal) rows. Various representations for the partition function which describes such enumerations are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Takhtajan and L. D. Faddeev, “Quantum inverse scattering method and the Heisenberg XYZ model,” Usp. Mat. Nauk, 34, 13–63 (1979).

    Google Scholar 

  2. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  3. P. P. Kulish, “Quantum difference nonlinear Schrödinger equation,” Lett. Math. Phys., 5, 191–197 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. S. Gerdjikov, M. I. Ivanov, and P. P. Kulish, “Expansions over the squared solutions and difference evolution equations,” J. Math. Phys., 25, 25–34 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. M. Bogoliubov, R. K. Bullough, and G. D. Pang, “Exact solution of a q-boson hopping model,” Phys. Rev. B, 47, 11495–11498 (1993).

    Article  Google Scholar 

  6. N. M. Bogoliubov and P. P. Kulish, “Exactly solvable models of quantum nonlinear optics,” Zap. Nauchn. Semin. POMI, 398, 26–54 (2012).

    Google Scholar 

  7. N. M. Bogoliubov and T. Nasar, “On the spectrum of the non-Hermitian phase-difference model,” Phys. Lett. A, 234, 345-350 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. E. Korepin, “Calculations of norms of Bethe wave functions,” Commun. Math. Phys., 86, 391–418 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. G. Izergin, “Partition function of the six-vertex model in a finite volume,” Dokl. Akad. Nauk SSSR, 297, 331–334 (1987).

    MathSciNet  Google Scholar 

  10. A. G. Izergin, D. A. Coker, and V. E. Korepin, “Determinant formula for the six-vertex model,” J. Phys. A, 25, 4315–4334 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Kuperberg, “Another proof of the alternating-sign matrix conjecture,” Int. Res. Math. Notices, 1996, 139–150 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  13. N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model,” J. Phys. A, 38, 9415–9430 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. M. Bogoliubov, “Four-vertex model and random tilings,” Teor. Mat. Fiz., 155, 25–38 (2008).

    Article  Google Scholar 

  15. N. M. Bogoliubov and C. Malyshev, “Correlation functions of XX0 Heisenberg chain, q-binomial determinants, and random walks,” Nucl. Phys. B, 879, 268–291 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. M. Bogoliubov, “Scalar products of vectors of states in totally asymmetric exactly solvable models on a ring,” Zap. Nauchn. Semin. POMI, 398, 5–25 (2012).

    Google Scholar 

  17. F. Colomo and A. G. Pronko, “The arctic curve of the domain-wall six-vertex model,” J. Stat. Phys., 138, 662–700 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Colomo and A. G. Pronko, “The limit shape of large alternating-sign matrices,” SIAM J. Discrete Math., 24, 1558–1571 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Colomo and A. G. Pronko, “Third-order phase transition in random tilings,” Phys. Rev. E, 88, 042125 (2013).

    Article  Google Scholar 

  20. F. Colomo and A. G. Pronko, “Thermodynamics of the six-vertex model in an L-shaped domain,” Comm. Math. Phys., 339, 699–728 (2015).

    Article  MathSciNet  Google Scholar 

  21. N. M. Bogoliubov, “Five-vertex model with fixed boundary conditions,” Algebra Analiz, 21, 58–78 (2009).

    Google Scholar 

  22. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego, CA (1982).

    MATH  Google Scholar 

  23. G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing (1976).

  24. V. S. Kapitonov and A. G. Pronko, “Five-vertex model and boxed plane partitions,” Zap. Nauchn. Semin. POMI, 360, 162–179 (2008).

    Google Scholar 

  25. V. S. Kapitonov and A. G. Pronko, “Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model,” Zap. Nauchn. Semin. POMI, 398, 125–144 (2012).

    Google Scholar 

  26. H. Cohn, M. Larsen, and J. Propp, “The shape of a typical boxed plane partition,” New York J. Math., 4, 137–165 (1998).

    MathSciNet  MATH  Google Scholar 

  27. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

  28. A. G. Pronko, “On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions,” Zap. Nauchn. Semin. POMI, 398, 179–208 (2012).

    Google Scholar 

  29. A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).

    Google Scholar 

  30. K. Okamoto, “Studies on the Painlevé equations. I. Sixth Painlevé equation PVI,” Ann. Mat. Pura Appl., 146, 337–381 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  31. P. J. Forrester and N. S. Witte, “Application of the τ -function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits,” Nagoya Math. J., 174, 29–114 (2004).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Pronko.

Additional information

Dedicated to Petr Petrovich Kulish in connection with his 70th birthday

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 433, 2015, pp. 204–223.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronko, A.G. The Five-Vertex Model and Enumerations of Plane Partitions. J Math Sci 213, 756–768 (2016). https://doi.org/10.1007/s10958-016-2737-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2737-x

Keywords

Navigation