Skip to main content
Log in

The Einstein-Like Field Theory and Renormalization of the Shear Modulus

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The Einstein-like field theory is developed to describe an elastic solid containing distribution of screw dislocations with finite-sized core. The core self-energy is given by a gauge-translational Lagrangian that is quadratic in torsion tensor and corresponding to the three-dimensional Riemann–Cartan geometry. The Hilbert–Einstein gauge equation plays the role of unconventional incompatibility law. The stress tensor of the modified screw dislocations is smoothed within the core. The renormalization of the shear modulus caused by proliferation of dipoles of nonsingular screw dislocations is studied. Bibliography: 23 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kleinert, Gauge Fields in Condensed Matter, Vols. I, II, World Scientific, Singapore (1989).

    Book  MATH  Google Scholar 

  2. M. O. Katanaev and I. V. Volovich, “Theory of defects in solids and three-dimensional gravity,” Ann. Phys., 216, 1–28 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. O. Katanaev, “Geometric theory of defects,” Usp. Fiz. Nauk, 48, 675–701 (2005).

    Article  Google Scholar 

  4. G. de Berredo-Peixoto and M. O. Katanaev, “Tube dislocations in gravity,” J. Math. Phys., 50, 042501 (2009).

    Article  MathSciNet  Google Scholar 

  5. H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, World Scientific, Singapore (2008).

    Book  MATH  Google Scholar 

  6. C. Malyshev, “The T(3)-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics,” Ann. Phys., 286, 249–277 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Malyshev, “The Einsteinian T(3)-gauge approach and the stress tensor of the screw dislocation in the second order: avoiding the cut-off at the core,” J. Phys. A: Math. Theor., 40, 10657–10684 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems,” J. Phys. C: Solid State Phys., 6, 1181–1203 (1973).

    Article  Google Scholar 

  9. A. Holz and J. T. N. Medeiros, “Melting transition of two-dimensional crystals,” Phys. Rev. B, 17, 1161–1174 (1978).

    Article  Google Scholar 

  10. D. R. Nelson, “Study of melting in two dimensions,” Phys. Rev. B, 18, 2318–2338 (1978).

    Article  Google Scholar 

  11. D. R. Nelson and B. I. Halperin, “Dislocation-mediated melting in two dimensions,” Phys. Rev. B, 19, 2457–2484 (1979).

    Article  Google Scholar 

  12. A. P. Young, “Melting and vector Coulomb gas in two dimensions,” Phys. Rev. B, 19, 1855–1866 (1979).

    Article  Google Scholar 

  13. S. Panyukov and Y. Rabin, “Statistical physics of interacting dislocation loops and their effect on the elastic moduli of isotropic solids,” Phys. Rev. B, 59, 13657–13671 (1999-I).

  14. K. J. Strandburg, “Two-dimensional melting,” Rev. Mod. Phys., 60, 161–207 (1988).

    Article  Google Scholar 

  15. C. Malyshev, “Nonsingular screw dislocations as the Coulomb gas with smoothed out coupling and the renormalization of the shear modulus,” J. Phys. A: Math. Theor., 44, 285003 (2011).

    Article  MathSciNet  Google Scholar 

  16. C. Malyshev, “Non-free gas of dipoles of nonsingular screw dislocations and the shear modulus near the melting,” Ann. Phys., 351, 22–34 (2014).

    Article  MathSciNet  Google Scholar 

  17. D. S. Fisher, “Shear moduli and melting temperatures of two-dimensional electron crystals: low temperatures and high magnetic fields,” Phys. Rev. B, 26, 5009–5021 (1982).

    Article  Google Scholar 

  18. P. Kalinay and L. Šamaj, “Thermodynamic properties of the two-dimensional Coulomb gas in the low-density limit,” J. Stat. Phys., 106, 857–874 (2002).

    Article  MATH  Google Scholar 

  19. B. Jancovici and L. Šamaj, “Guest charge and potential fluctuations in two-dimensional classical Coulomb systems,” J. Stat. Phys., 131, 613–629 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. A. Gifford and G. Baym, “Dislocation-mediated melting in superfluid vortex lattices,” Phys. Rev. A, 78, 043607 (2008).

    Article  Google Scholar 

  21. H. H. von Grünberg, P. Keim, K. Zahn, and G. Maret, “Elastic behavior of a twodimensional crystal near melting,” Phys. Rev. Lett., 93, 255703 (2004).

    Article  Google Scholar 

  22. P. Dillmann, G. Maret, and P. Keim, “Comparison of 2D melting criteria in a colloidal system,” J. Phys.: Condens. Matter, 24, 464118 (2012).

    Google Scholar 

  23. H. Kleinert, “Melting of Wigner-like lattice of parallel polarized dipoles,” Europhys. Lett., 102, 56002 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Malyshev.

Additional information

Dedicated to P. P. Kulish on the occasion of his 70th birthday

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 433, 2015, pp. 196–203.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, C. The Einstein-Like Field Theory and Renormalization of the Shear Modulus. J Math Sci 213, 750–755 (2016). https://doi.org/10.1007/s10958-016-2736-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2736-y

Keywords

Navigation