Skip to main content
Log in

Matrix Factorization for Solutions of the Yang–Baxter Equation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study solutions of the Yang–Baxter equation on the tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of rank 1 symmetry algebra. We consider the cases of the Lie algebra sℓ2, the modular double (trigonometric deformation), and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of sℓ2, finite-difference operators with trigonometric coefficients in the case of the modular double, or finite-difference operators with coefficients constructed of the Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulas. Bibliography: 44 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Baxter, “Partition function of the eight-vertex lattice model,” Ann. Phys., 70, 193–228 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. V. Bazhanov, V. V. Mangazeev, and S. M. Sergeev, “Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry,” Nucl. Phys. B, 784, 234 (2007); [hep-th/0703041].

    Article  MathSciNet  MATH  Google Scholar 

  3. V. V. Bazhanov and S. M. Sergeev, “A master solution of the quantum Yang–Baxter equation and classical discrete integrable equations,” ATMP, 16, 65–95 (2012); arXiv:1006.0651 [math-ph].

  4. V. V. Bazhanov and Yu. G. Stroganov, “Chiral Potts model as a descendant of the sixvertex model,” J. Stat. Phys., 59, 799–817 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. G. Bytsko and J. Teschner, “R-operator, coproduct, and Haar measure for the modular double of U q (sl(2,R)),” Commun. Math. Phys., 240, 171–196 (2003); math.QA/0208191.

  6. A. G. Bytsko and J. Teschner, “Quantization of models with noncompact quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model,” J. Phys. A, 39, 12927 (2006); hep-th/0602093.

  7. D. Chicherin and S. Derkachov, “The R-operator for a modular double,” J. Phys. A, 47, 115203 (2014); arXiv:1309.0803 [math-ph].

  8. D. Chicherin, S. E. Derkachov and V. P. Spiridonov, “From principal series to finitedimensional solutions of the Yang–Baxter equation,” arXiv:1411.7595 [math-ph].

  9. D. Chicherin, S. E. Derkachov, and V. P. Spiridonov, “New elliptic solutions of the Yang–Baxter equation,” arXiv:1412.3383 [math-ph].

  10. S. E. Derkachov, “Factorization of the R-matrix. I,” Zap. Nauchn. Semin. POMI, 335, 134–163 (2006); arXiv:math/0503396 [math.QA].

  11. S. Derkachov, D. Karakhanyan, and R. Kirschner, “Yang–Baxter R-operators and parameter permutations,” Nucl. Phys. B, 785, 263 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. E. Derkachov and A. N. Manashov, “General solution of the Yang–Baxter equation with symmetry group SL(n,ℂ),” Algebra Analiz, 21, 1–94 (2009).

  13. S. E. Derkachov and V. P. Spiridonov, “Yang–Baxter equation, parameter permutations, and the elliptic beta integral,” Usp. Mat. Nauk, 68, 59–106 (2013); arXiv:1205.3520 [math-ph].

  14. S. E. Derkachov and V. P. Spiridonov, “Finite-dimensional representations of the elliptic modular double,” Theor. Math. Phys. (to appear); arXiv:1310.7570 [math.QA].

  15. L. D. Faddeev, “How Algebraic Bethe Ansatz works for integrable model,” in: A. Connes, K. Kawedzki, and J. Zinn-Justin (eds), Quantum Symmetries/Symmetries Quantiques, Proc. Les-Houches summer school, LXIV, North-Holland (1998), pp. 149–211.

  16. L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group,” Lett. Math. Phys., 34, 249–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. D. Faddeev, “Modular double of a quantum group,” in: Conf. Moshé Flato 1999, vol. I, Math. Phys. Stud., 21, Kluwer, Dordrecht (2000), pp. 149–156; math.QA/9912078.

  18. L. D. Faddeev, R. M. Kashaev, and A. Y. Volkov, “Strongly coupled quantum discrete Liouville theory. 1. Algebraic approach and duality,” Comm. Math. Phys., 219, 199–219 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. O. Tarasov, L. A. Takhtajan, and L. D. Faddeev, “Local Hamiltonians for integrable quantum models on a lattice,” Teor. Mat. Fiz., 57, 163–181 (1983).

    Article  MathSciNet  Google Scholar 

  20. A. Yu. Volkov and L. D. Faddeev, “Yang–Baxterization of the quantum dilogarithm,” Zap. Nauchn. Semin. POMI, 224, 146–154 (1995).

    Google Scholar 

  21. L. Hadasz, M. Pawelkiewicz, and V. Schomerus, “Self-dual continuous series of representations for U q (sl(2)) and U q (osp(1|2)),” JHEP, 1410, 91 (2014)

  22. M. Jimbo (ed), “Yang–Baxter equation in integrable systems,” Adv. Ser. Math. Phys., 10, World Scientific (Singapore) (1990).

  23. S. M. Khoroshkin and V. N. Tolstoy, “Yangian double,” Lett. Math. Phys., 36, 373–402 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Khoroshkin and Z. Tsuboi, “The universal R-matrix and factorization of the L-operators related to the Baxter Q-operators”, J. Phys. A, 47, 192003 (2014).

    Article  MathSciNet  Google Scholar 

  25. I. Krichever and A. Zabrodin, “Vacuum curves of elliptic L-operators and representations of Sklyanin algebra,” Amer. Math. Soc. Transl., Ser. 2, 191, 199–221 (1999).

  26. P. P. Kulish and E. K. Sklyanin, “Solutions of the Yang–Baxter equation,” Zap. Nauchn. Semin. LOMI, 95, 129–160 (1980).

    MathSciNet  Google Scholar 

  27. P. P. Kulish, N. Y. Reshetikhin, and E. K. Sklyanin, “Yang–Baxter equation and representation theory. 1,” Lett. Math. Phys., 5, 393–403 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  28. P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” Lect. Notes Physics, 151, 61–119 (1982).

    Article  MathSciNet  Google Scholar 

  29. V. V. Mangazeev, “On the Yang–Baxter equation for the six-vertex model,” Nucl. Phys. B, 882, 70 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. V. Mangazeev, “Q-operators in the six-vertex model.” Nucl. Phys. B, 886, 166 (2014).

    Article  MathSciNet  Google Scholar 

  31. M. Pawelkiewicz, V. Schomerus, and P. Suchanek, “The universal Racah-Wigner symbol for U q (osp(1—2)),” JHEP, 1404, 079 (2014).

    Article  Google Scholar 

  32. E. M. Rains, “BC n -symmetric abelian functions,” Duke Math. J., 135, 99–180 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Rosengren, “An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic),” Ramanujan J., 13, 131–166 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Rosengren, “Sklyanin invariant integration,” Internat. Math. Res. Notices, 60, 3207–3232 (2004).

    Article  MathSciNet  Google Scholar 

  35. S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems,” J. Math. Phys., 38, 1069–1146 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  36. E. K. Sklyanin, “Some algebraic structures connected with the Yang–Baxter equation,” Funkts. Analiz Prilozh., 16, 27–34 (1982).

    MathSciNet  Google Scholar 

  37. E. K. Sklyanin, “On some algebraic structures related to Yang–Baxter equation: representations of the quantum algebra,” Funkts. Analiz Prilozh., 17, 34–48 (1983).

    MathSciNet  Google Scholar 

  38. V. P. Spiridonov, “Continuous biorthogonality of the elliptic hypergeometric function,” Algebra Analiz, 20, 155–185 (2008).

    MathSciNet  Google Scholar 

  39. V. P. Spiridonov, “On the elliptic beta function,” Usp. Mat. Nauk, 56, 181–182 (2001).

    Article  MathSciNet  Google Scholar 

  40. V. P. Spiridonov, “A Bailey tree for integrals,” Teor. Mat. Fiz., 139, 104–111 (2004).

    Article  MathSciNet  Google Scholar 

  41. V. P. Spiridonov, “Essays on the theory of elliptic hypergeometric functions,” Usp. Mat. Nauk, 63, 3–72 (2008).

    Article  MathSciNet  Google Scholar 

  42. V. P. Spiridonov and S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems,” Adv. Math., 207, 91–132 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Y. Volkov, “Noncommutative hypergeometry,” Comm. Math. Phys., 258, 257–273 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Zabrodin, “On the spectral curve of the difference Lame operator,” Int. Math. Research Notices, 11, 589–614 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Derkachov.

Additional information

Dedicated to Petr Kulish on the occasion of his 70th birthday

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 433, 2015, pp. 156–185.

Translated by S. E. Derkachov and D. I. Chicherin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkachov, S.E., Chicherin, D. Matrix Factorization for Solutions of the Yang–Baxter Equation. J Math Sci 213, 723–742 (2016). https://doi.org/10.1007/s10958-016-2734-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2734-0

Keywords

Navigation