Skip to main content
Log in

Time-Dependent Correlation Functions for the Bimodal Bose–Hubbard Model

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The bimodal Bose–Hubbard model is studied. The application of the Quantum Inverse Method allows us to calculate the time-dependent correlation functions of the model. Form-factors of the bosonic creation and annihilation operators in the wells are expressed in the determinantal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Milburn, J. Corney, E. Wright, and D. Walls, “Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential,” Phys. Rev., A 55, 4318 (1997).

    Article  Google Scholar 

  2. D. Witthaut, F. Trimborn, and S. Wimberger, “Dissipation induced coherence of a two-mode Bose–Einstein condensate,” Phys. Rev. Lett., 101, 200402 (2008).

    Article  Google Scholar 

  3. E. Boukobza, M. Chuchem, D. Cohen, and A. Vardi, “Phase-diffusion dynamics in weakly coupled Bose–Einstein condensates,” Phys. Rev. Lett., 102, 180403 (2009).

    Article  Google Scholar 

  4. T. Pudlik, H. Hennig, D. Witthaut, and D. Campbell, “Dynamics of entanglement in a dissipative Bose–Hubbard dimer,” Phys. Rev., A 88, 063606 (2013).

    Article  Google Scholar 

  5. F. Trimborn, D. Witthaut, V. Kegel, and H. J. Korsch, “Nonlinear Landau–Zener tunneling in quantum phase space,” New J. Phys., 12, 053010 (2010).

    Article  Google Scholar 

  6. I. Tikhonenkov, M. G. Moore, and A. Vardi, “Robust sub-shot-noise measurement via Rabi–Josephson oscillations in bimodal Bose–Einstein condensates,” Phys. Rev., A 83, 063628 (2011).

    Article  Google Scholar 

  7. M. Chuchem, K. Smith-Mannschott, M. Hiller, T. Kottos, A. Vardi, and D. Cohen, “Quantum dynamics in the bosonic Josephson junction,” Phys. Rev., A 82, 053617 (2010).

    Article  Google Scholar 

  8. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science, 306, 1330 (2004).

    Article  Google Scholar 

  9. D. Jaksch, H.-J. Briegel, J. Cirac, C. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett., 82, 1975 (1999).

    Article  Google Scholar 

  10. L. D. Faddeev, “Quantum completely integrable models of field theory,” in: 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., vol. 2, World Sci., Singapore (1995), pp. 187–235.

  11. P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” Lecture Notes Phys., 151, Springer (1982), pp. 61–119.

  12. V. Z. Enol’skii, V. B. Kuznetsov, and M. Salerno, “On the quantum inverse scattering method for the DST dimer,” Phys., D 68, 138 (1993).

    MathSciNet  Google Scholar 

  13. J. Links and K. Hibberd, “Bethe ansatz solutions of the Bose–Hubbard dimer,” SIGMA 2, Paper 095 (2006).

  14. R. Orús, S. Dusuel, and J. Vidal, “Equivalence of critical scaling laws for many-body entanglement in the Lipkin–Meshkov–Glick model,” Phys. Rev. Lett., 101, 025701 (2008).

    Article  Google Scholar 

  15. N. M. Bogoliubov, R. K. Bullough, and J. Timonen, “Exact solution of generalised Tavis-Cummings models in quantum optics,” J. Phys. A, 29, 6305 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. M. Bogoliubov and P. P. Kulish, “Exactly solvable models of quantum nonlinear optics,” J. Math. Sci., 192, 14 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  18. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

  19. N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz,” Theor. Math. Phys, 79, 502 (1989).

    Article  MathSciNet  Google Scholar 

  20. N. Kitanine, J. M. Maillet, and V. Terras, “Form factors of the XXZ Heisenberg spin-1/2 finite chain,” Nucl. Phys., B 516, 647 (1999).

    Article  MathSciNet  Google Scholar 

  21. V. E. Korepin, “Calculation of norms of Bethe wave functions,” Comm. Math. Phys., 86, 391 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Hillery and M. Zubairy, “Entanglement conditions for two-mode states,” Phys. Rev. Lett., 96, 050503 (2006).

    Article  MathSciNet  Google Scholar 

  23. Q. He, M. Reid, T. Vaughan, C. Gross, M. Oberthaler, and P. Drummond, “Einstein–Podolsky–Rosen entanglement strategies in two-well Bose–Einstein condensates,” Phys. Rev. Lett., 106, 120405 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Bogoliubov.

Additional information

Dedicated to P. P. Kulish on his 70th birthday

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 433, 2015, pp. 65–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogoliubov, N.M. Time-Dependent Correlation Functions for the Bimodal Bose–Hubbard Model. J Math Sci 213, 662–670 (2016). https://doi.org/10.1007/s10958-016-2730-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2730-4

Keywords

Navigation