Skip to main content

Formal Matrices and Their Determinants

Abstract

In the present paper, we study formal matrix rings over a given ring and determinants of such matrices.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. N. Abyzov and D. T. Tapkin, “On some classes of formal matrix rings,” Izv. Vyssh. Uchebn. Zaved., Mat., 59, No. 3, 1–12 (2015).

    Google Scholar 

  2. 2.

    Y. Baba and K. Oshiro, Classical Artinian Rings and Related Topics, World Scientific, London (2009).

    Book  MATH  Google Scholar 

  3. 3.

    J.-J. Climent, P. R. Navarro, and L. Tortosa, “On the arithmetic of the endomorphism ring End(ℤ p × \( {\mathbb{Z}}_{p^2} \)),” Appl. Algebra Eng. Commun. Comput., 22, No. 2, 91–108 (2011).

  4. 4.

    M. Cohen, “Morita context related to finite automorphism groups of rings,” Pacific J. Math., 98, 37–54 (1982).

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    R. M. Fossum, A. Griffith, and I. Reiten, “Trivial extensions of Abelian categories,” in: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory, Lect. Notes Math., Vol. 456, Springer, Berlin (1975), pp. 1–122.

  6. 6.

    O. Gurgun, S. Halicioglu, and A. Harmanci, Quasipolarity of Generalized Matrix Rings, arXiv: 1303.3173v1[math.RA] (2013).

  7. 7.

    O. Gurgun, S. Halicioglu, and A. Harmanci, Strong J-Cleanness of Formal Matrix Rings, arXiv: 1308.4105v1[math.RA] (2013).

  8. 8.

    R. A. Horn and Ch. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge (2012).

    Book  Google Scholar 

  9. 9.

    Q. Huang and G. Tang, “Quasipolar property of trivial Morita context,” Int. J. Pure Appl. Math., 90, No. 4, 423–431 (2014).

    Article  MATH  Google Scholar 

  10. 10.

    Q. Huang, G. Tang, and Y. Zhou, “Quasipolar property of generalized matrix rings,” Commun. Algebra, 42, No. 9, 3883–3894 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    K. H. Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York (1982).

    MATH  Google Scholar 

  12. 12.

    P. A. Krylov, “Isomorphisms of generalized matrix rings,” Algebra Logic, 47, No. 4, 258–262 (2008).

    MathSciNet  Article  Google Scholar 

  13. 13.

    P. A. Krylov, “The group K 0 of a generalized matrix ring,” Algebra Logic, 52, No. 3, 250–261 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    P. A. Krylov, “Calculation of the group K 1 of a generalized matrix ring,” Sib. Math. J., 55, No. 4, 639–644 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    P. A. Krylov, “Determinants of generalized matrices of order 2,” J. Math. Sci., to appear.

  16. 16.

    P. A. Krylov, A. V. Mikhalev, and A. A. Tuganbaev, Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht (2003).

    Book  MATH  Google Scholar 

  17. 17.

    P. A. Krylov and A. A. Tuganbaev, “Modules over formal matrix rings,” J. Math. Sci., 171, No. 2, 248–295 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    P. A. Krylov and A. A. Tuganbaev, Modules over Discrete Valuation Domains, De Gruyter Exp. Math., Vol. 43, Walter de Gruyter, Berlin (2008).

  19. 19.

    I. Palmer, “The global homological dimension of semitrivial extensions of rings,” Math. Scand., 37, 223–256 (1975).

    MathSciNet  Google Scholar 

  20. 20.

    A. D. Sands, “Radicals and Morita contexts,” J. Algebra, 24, 335–345 (1973).

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    G. Tang, Ch. Li, and Y. Zhou, “Study of Morita contexts,” Commun. Algebra, 42, 1668–1681 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    G. Tang and Y. Zhou, “Strong cleanness of generalized matrix rings over a local ring,” Linear Algebra Appl., 437, 2546–2559 (2012).

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    G. Tang and Y. Zhou, “A class of formal matrix rings,” Linear Algebra Appl., 438, No. 12, 4672–4688 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    A. Tuganbaev, Semidistributive Modules and Rings, Kluwer Academic, Dordrecht (1998).

    Book  MATH  Google Scholar 

  25. 25.

    A. Tuganbaev, Ring Theory. Arithmetical Modules and Rings [in Russian], MCCME, Moscow (2009).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. A. Krylov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 1, pp. 65–119, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krylov, P.A., Tuganbaev, A.A. Formal Matrices and Their Determinants. J Math Sci 211, 341–380 (2015). https://doi.org/10.1007/s10958-015-2610-3

Download citation

Keywords

  • Canonical Form
  • Main Diagonal
  • Prime Ring
  • Invertible Element
  • Endomorphism Ring