Skip to main content
Log in

On the Mathematical Analysis of Thick Fluids

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In chemical engineering models, shear-thickening or dilatant fluids converge in the limit case to a class of incompressible fluids with a maximum admissible shear rate, the so-called thick fluids. These non-Newtonian fluids can be obtained, in particular, as the power limit of the Ostwald–de Waele fluids, and can be described as a new class of evolution variational inequalities, in which the shear rate is bounded by a positive constant or, more generally, by a bounded positive function. It is established the existence, uniqueness, and the continuous dependence of solutions to this general class of thick fluids with variable threshold on the absolute value of the deformation rate tensor, the solutions of which belong to a time dependent convex set. For sufficiently large viscosity, the asymptotic stabilization toward a unique steady state is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aronsson, L. C. Evans, and Y. Wu, “Fast/slow diffusion and growing sandpiles,” J. Diff. Eqs., 131, 304–335 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  2. H. A. Barnes, “Shear-Thickening (“Dilatancy”) in suspensions on nonaggregating solid particles dispersed in Newtonian liquids,” J. Rheology, 33, No. 2, 329–366 (1989).

    Article  Google Scholar 

  3. T. Bhattacharya, E. DiBenedetto, and J. J. Manfredi, “Limits as p→∞ of Δ p u p = f and related extremal problems,” Rend. Sem. Mat. Univ. Politec. Torino, 47, 15–68 (1989). Special Issue (1991).

  4. D. Breit and L. Diening, “Sharp conditions for Korn inequalities in Orlicz spaces,” J. Math. Fluid Mech., 14, 565–573 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications (second ed.), Butterworth-Heinemann, Oxford (2008).

    Google Scholar 

  6. J. C. De los Reyes and G. Stadler, “A nonsmooth model for discontinuous shear thickening fluids: analysis and numerical solution,” UT Austin ICES, Report 12-42 (2012), to appear in: Interfaces and Free Boundaries, 16 (2014).

  7. L. Diening, M. Ruzicka, and J. Wolf, “Existence of weak solutions for unsteady motions of generalized Newtonian fluids,” Ann. Sc. Norm. Super. Pisa Cl. Sci., (5) 9, No. 1, 1–46 (2010).

    MathSciNet  Google Scholar 

  8. G. Duvaut and J. L. Lions, Les Inequations en Mecanique et en Physique, Dunod, Paris (1972).

    MATH  Google Scholar 

  9. M. Fuchs and G. Seregin, “Variational methods for problems from plasticity theory and for generalized Newtonian fluids,” Lect. Notes Math., 1749 (2000).

  10. C. Gerhardt, “On the existence and uniqueness of a warpening function in the elastic-plastic torsion of a cylindrical bar with a multiply connected cross section,” Lect. Notes Math., 503 (1976).

  11. P. Gwiazda, J. Malek, and A. Swierczewska, “On flows of an incompressible fluid with a discontinuous power-law-like rheology,” Comput. Math. Appl., 53, 531–546 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Haraux, “Nonlinear evolution equations. Global behavior of solutions,” Lect. Notes Math., 841 (1981).

  13. O. A. Ladyzhenskaya, “New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems,” Trudy Steklov Mat. Inst., 102, 85–104 (1967).

    MATH  Google Scholar 

  14. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Gordon and Breach, New York (1969).

    MATH  Google Scholar 

  15. Y. S. Lee, E. D. Wetzel, and N. J. Wagner, “The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid,” J. Materials Sci., 38, 2825–2833 (2004).

    Article  Google Scholar 

  16. J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris (1969).

    MATH  Google Scholar 

  17. J. Malek, J. Necas, M. Rokyta, and M. Ruzicka, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London (1996).

    Book  MATH  Google Scholar 

  18. J. Malek and K. R. Rajagopal, “Mathematical issues concerning the Navier–Stokes equations and some of its generalizations,” In: Evolutionary equations, Vol. II, Handb. Diff. Eqs., Elsevier/North-Holland, Amsterdam (2005), pp. 371–459.

  19. J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, Cambridge (2012).

    Google Scholar 

  20. F. Miranda and, J. F. Rodrigues, “On a variational inequality for incompressible non-Newtonian thick flows,” to appear.

  21. F. Miranda, J. F. Rodrigues, and L. Santos, “On a p-curl system arising in electromagnetism,” Discrete Contin. Dyn. Syst., Ser. S, 5, No. 3, 605–629 (2012).

    MATH  MathSciNet  Google Scholar 

  22. L. Nirenberg, “An extended interpolation inequality,” Ann. Scuola Norm. Pisa Cl. Sci., 3rd serie, 20, No. 4, 733–737 (1966).

  23. L. Prigozhin, “Sandpiles and river networks: extended systems with non-local interactions,” Phys. Rev. E., 49, 1161–1167 (1994).

    Article  MathSciNet  Google Scholar 

  24. J. F. Rodrigues and L. Santos, “A parabolic quasivariational inequality arising in a superconductivity model,” Ann. Scuola Norm. Pisa Cl. Sci., 29, 153–169 (2000).

    MATH  MathSciNet  Google Scholar 

  25. J. F. Rodrigues and L. Santos, “Quasivariational solutions for first order quasilinear equations with gradient constraint,” Arch. Ration. Mech. Anal., 205, No. 2, 493–514 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Santos, “A diffusion problem with gradient constraint and evolutive Dirichlet condition,” Portugaliae Math., 48, No. 4, 441–468 (1991).

    MATH  Google Scholar 

  27. L. Santos, “Variational problems with non-constant gradient constraints,” Portugaliae Math., 59, 205–248 (2002).

    MATH  Google Scholar 

  28. S. A. Sazhenkov, “The problem of motion of rigid bodies in a non-Newtonean incompressible fluid,” Siberian Math. J., 39 126–140 (1998).

    Article  MathSciNet  Google Scholar 

  29. J. Simon, “Compact sets in the space L p(0, T;B),” Ann. Mat. Pura Appl., 146, No. 4, 65–96 (1987).

    MATH  MathSciNet  Google Scholar 

  30. V. V. Shelukhin, “Bingham viscoplastic as a limit of non-Newtonian fluids,” J. Math. Fluid Mech., 4, No. 2, 109–127 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  31. N. J. Wagner and J. F. Brady, “Shear thickening in colloidal dispersions,” Physics Today, 62, No. 10, 27–32 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Rodrigues.

Additional information

Dedicated to V. A. Solonnikov on the occasion of his 80th birthday

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 425, 2014, pp. 117–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, JF. On the Mathematical Analysis of Thick Fluids. J Math Sci 210, 835–848 (2015). https://doi.org/10.1007/s10958-015-2594-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2594-z

Keywords

Navigation