Skip to main content
Log in

The Width of the Group GL(6,K) with Respect to a Set of Quasiroot Elements

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The structure of GL(6,K) with respect to a certain family of conjugacy classes the elements of which are said to be quasiroot is studied. Namely, it is proved that any element of GL(6,K) is a product of three quasiroot elements, and a complete description of the elements that are products of two quasiroot elements is given. The result arises in studying the width of the exceptional groups of type E6, but is also of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel, “Properties and linear representations of Chevalley groups,” in: Seminar on Algebraic Groups [Russian translation], Mir, Moscow (1973), pp. 9–59.

  2. N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV–VI, Mir, Moscow (1972).

  3. N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. VII–VIII, Mir, Moscow (1978).

  4. N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “The Chevalley group of type E6 in the 27-dimensional representation,” Zap. Nauchn. Semin. POMI, 338, 5–68 (2006).

    MATH  Google Scholar 

  5. N. A. Vavilov and I. M. Pevzner, “Triples of long root subgroups,” Zap. Nauchn. Semin. POMI, 343, 54–83 (2007).

    MathSciNet  Google Scholar 

  6. M. A. Vsemirnov, “Is the group SL(6,ℤ) (2, 3)-generated? ” Zap. Nauchn. Semin. POMI, 330, 101–130 (2006).

    MATH  Google Scholar 

  7. M. A. Vsemirnov, “The (2, 3)-generation of matrix groups over the ring of integers,” Algebra Analiz, 19, No. 6, 22–58 (2007).

    MathSciNet  Google Scholar 

  8. A. Yu. Luzgarev and I. M. Pevzner, “Private life of GL(5,ℤ),” Zap. Nauchn. Semin. POMI, 305, 153–163 (2003).

    Google Scholar 

  9. O. T. O’Meara, “Lectures on linear groups [Russian translation],” in: Automorphisms of Classical Groups, Mir, Moscow (1976), pp. 57–167.

  10. O. T. O’Meara, Lectures on Symplectic Groups [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  11. I. M. Pevzner, “Geometry of root elements in groups of type E6,” Algebra Analiz, 23, No. 3, 261–309 (2011).

    MathSciNet  Google Scholar 

  12. I. M. Pevzner, “Width of groups of type E6 with respect to root elements. I,” Algebra Analiz, 23, No. 5, 155–198 (2011).

    MathSciNet  Google Scholar 

  13. I. M. Pevzner, “Width of groups of type E6 with respect to root elements. II,” Zap. Nauchn. Semin. POMI, 386, 242–264 (2011).

    Google Scholar 

  14. T. A. Springer, “Linear algebraic groups [Russian translation],” in: Algebraic Geometry. 4, Advances in Science and Technique, 55, VINITI, Moscow (1989), pp. 5–136.

  15. R. Steinberg, Lectures on Chevalley Groups [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  16. J. Humphreys, Linear Algebraic Groups [Russian translation], Nauka, Moscow (1980).

    Google Scholar 

  17. J. Humphreys, Introduction to the Theory of Lie Algebras and Their Representations [Russian translation].

  18. C. S. Ballantine, “Products of involutory matrices. I,” Linear and Multilinear Algebra, 5, No. 1, 53–62 (1977–1978).

  19. A. Cohen, A. Steinbach, R. Ushirobira, and D. Wales, “Lie algebras generated by extremal elements,” J. Algebra, 236, No. 1, 122–154 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. R. Dennis and L. N. Vaserstein, “On a question of M. Newman on the number of commutators,” J. Algebra, 118, No. 1, 150–161 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Dieudonné, “Sur les générateurs des groupes classiques,” Summa Brasil. Math., 3, 149–179 (1955).

    MathSciNet  Google Scholar 

  22. D. Ž. Djoković and J. G. Malzan, “Products of reflections in the general linear group over a division ring,” Linear Algebra Appl., 28, 53–62 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  23. E. W. Ellers, “Products of involutions in simple Chevalley groups,” J. Geom., 69, No. 1–2, 68–72 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. E. W. Ellers and R. Frank, “Products of quasireflections and transvections over local rings,” J. Geom., 31, No. 1–2, 69–78 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  25. E. W. Ellers and H. Ishibashi, “Factorization of transformations over a local ring,” Linear Algebra Appl., 85, 12–27 (1987).

    Article  MathSciNet  Google Scholar 

  26. E. W. Ellers and H. Lausch, “Length theorems for the general linear group of a module over a local ring,” J. Austral. Math. Soc. Ser. A, 46, No. 1, 122–131 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  27. E. W. Ellers and H. Lausch, “Generators for classical groups of modules over local rings,” J. Geom., 39, No. 1–2, 60–79 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  28. B. M. Gillio and M. C. Tamburini, “Alcuni classi di gruppi generati da tre involuzioni,” Rend. Ist. Lombardo Ser. A, 116, 191–209 (1982).

    Google Scholar 

  29. H. Gustafson, P. R. Halmos, and H. Radjavi, “Products of involutions,” Linear Algebra and Appl., 13, No. 1–2, 157–162 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  30. W. van der Kallen, “SL3(C[x]) does not have bounded word length,” Lecture Notes Math., 966, 357–361 (1982).

    Article  Google Scholar 

  31. F. Knüpel and K. Nielsen, “SL(V ) is 4-reflectional,” Geom. Dedicata, 38, No. 3, 301–308 (1991).

    MathSciNet  Google Scholar 

  32. G. Malle, J. Saxl, and T. S. Weigel, “Generation of classical groups,” Geom. Dedicata, 49, No. 1, 85–116 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Newman, “Unimodular commutators,” Proc. Amer. Math. Soc., 101, No. 4, 605–609 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. S. Sivatski and A. V. Stepanov, “On the word length of commutators in GL n (R),” K-Theory, 17, No. 4, 295–302 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  35. T. A. Springer, Linear Algebraic Groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston (1998).

  36. W. Thurston and L. N. Vaserstein, “On K 1-theory of the Euclidean space,” Topology Appl., 23, No. 2, 145–148 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  37. L. N. Vaserstein, “On K 1-theory of topological spaces,” Contemp. Math., 55, 729–740 (1986).

    Article  MathSciNet  Google Scholar 

  38. L. N. Vaserstein, “Reduction of a matrix depending on parameters to a diagonal form by addition operations,” Proc. Amer. Math. Soc., 103, No. 3, 741–746 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  39. L. N. Vaserstein and E. Wheland, “Factorization of invertible matrices over rings of stable rank one,” J. Austral. Math. Soc. Ser. A , 48, No. 3, 455–460 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  40. M. A. Vsemirnov, “The group GL(6,ℤ) is (2,3)-generated,” J. Group Theory, 10, No. 4, 425–430 (2007).

    Article  MathSciNet  Google Scholar 

  41. J. W. Wood, “Bundles with totally disconnected structure group,” Comment. Math. Helv., 46, 257–273 (1971).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Pevzner.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 423, 2014, pp. 183–204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pevzner, I.M. The Width of the Group GL(6,K) with Respect to a Set of Quasiroot Elements. J Math Sci 209, 600–613 (2015). https://doi.org/10.1007/s10958-015-2516-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2516-0

Keywords

Navigation