Advertisement

Journal of Mathematical Sciences

, Volume 208, Issue 6, pp 706–722 | Cite as

On One Linear Integral Equation with a Coefficient that has Zeros

  • D. ShulaiaEmail author
  • P. Ghurtskaia
Article

Abstract

The aim of this paper is to study, in the class of H¨older functions, a linear integral equation with coefficient having two simple zeros in the interval under consideration. Using the theory of singular integral equations, we give the necessary and sufficient conditions for the solvability of this equation under some assumptions on their kernel. Finding a solution is reduced to solving a regular integral equation of the second kind.

Keywords

Integral Equation Homogeneous Equation Singular Integral Equation Singular Integral Operator Zero Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Bart and R. L. Warnock, “Linear integral equations of the third kind,” SIAM J. Math. Anal., 4, 609–622 (1973).MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. M. Case, “Elementary solutions of the transport equation and their applications,” Ann. Phys., 9, 1–23 (1960).MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley (1967).Google Scholar
  4. 4.
    C. Corduneanu, Principles of Differential and Integral Equations, Chelsea Publishing, Bronx, New York (1977).Google Scholar
  5. 5.
    L. D. Faddeev, “On a model of Friedrichs in the theory of perturbations of the continuous spectrum,” Tr. Mat. Inst. Steklova, 73, 292–313 (1964).MathSciNetGoogle Scholar
  6. 6.
    I. A. Fel’dman, “The discrete spectrum of the characteristic equation of radiation transfer theory,” Mat. Issled., 10, No. 1 (35), 236–243, 301 (1975).Google Scholar
  7. 7.
    J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam–London (1972).Google Scholar
  8. 8.
    K. Friedrichs, “¨Uber die Spektralzerlegung eines Integraloperators,” Math. Ann. 115, No. 1, 249–272 (1938).MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. S. Gabbasov, “A special version of the collocation method for integral equations of the third kind,” Differ. Uravn., 41, No. 12, 1690–1695, 1727 (2005).Google Scholar
  10. 10.
    F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).Google Scholar
  11. 11.
    T. A. Germogenova and D. A. Sulaja, “The characteristic equation of radiation transfer theory,” Dokl. Akad. Nauk SSSR, 231, No. 4, 841–844 (1976).MathSciNetGoogle Scholar
  12. 12.
    M. L. Krasnov, Integral Equations. Introduction to the Theory [in Russian], Nauka, Moscow (1975).Google Scholar
  13. 13.
    N. I. Muskhelishvili, Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, Noordhoff, Groningen (1953).Google Scholar
  14. 14.
    E. Schock, “Integral equations of the third kind,” Stud. Math. 81, No. 1, 1–11 (1985).MathSciNetGoogle Scholar
  15. 15.
    D. A. Shulaia, “Completeness theorems in linear multivelocity transport theory,” Dokl. Akad. Nauk SSSR, 259, No. 2, 332–335 (1981).MathSciNetGoogle Scholar
  16. 16.
    D. A. Shulaia, “A linear equation of multivelocity transport theory,” Zh. Vychisl. Mat. Mat. Fiz., 23, No. 5, 1125–1140 (1983).Google Scholar
  17. 17.
    D. A. Shulaia, “Inverse problem of linear multivelocity transport theory,” Dokl. Akad. Nauk SSSR, 270, No. 1, 82–87 (1983).MathSciNetGoogle Scholar
  18. 18.
    D. A. Shulaia, “Expansion of solutions of the equation of linear multivelocity transport theory in eigenfunctions of the characteristic equation,” Dokl. Akad. Nauk SSSR, 310, No. 4, 844–849 (1990).Google Scholar
  19. 19.
    D. Shulaia, “Solution of a linear integral equation of third kind,” Georgian Math. J., 9, No. 1, 179–196 (2002).MathSciNetGoogle Scholar
  20. 20.
    D. Shulaia, “Linear integral equations of the third kind arising from neutron transport theory,” Math. Methods Appl. Sci., 30, No. 15, 1941–1964 (2007).MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Shulaia, “Some applications of a spectral representation of the linear multigroup transport problem,” Transport Theory Stat. Phys., 38, No. 7, 347–382 (2009).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ya. D. Tamarkin, “On Fredholm’s integral equations whose kernels are analytic in a parameter,” Ann. Math. (2), 28, Nos. 1–4, 127–152 (1926/27).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Georgian Technical UniversityTbilisiGeorgia

Personalised recommendations