Skip to main content
Log in

Global Existence Results for Functional Differential Inclusions with Delay

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Our aim in this work is to study the existence of solutions of a functional differential inclusion with finite delay. We use the Bohnenblust–Karlin fixed-point theorem for the existence of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, John Wiley & Sons, Inc., Harlow, New York (1991).

    MATH  Google Scholar 

  2. N. U. Ahmed, Dynamic Systems and Control with Applications, World Sci. Publ. Co., Hackensack, NJ (2006).

    Book  MATH  Google Scholar 

  3. S. Baghli and M. Benchohra, “Uniqueness results for partial functional differential equations in Fréchet spaces,” Fixed Point Theory, 9, 395–406 (2008).

    MATH  MathSciNet  Google Scholar 

  4. S. Baghli and M. Benchohra, “Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces,” Georg. Math. J., 17, 423–436 (2010).

    MATH  MathSciNet  Google Scholar 

  5. S. Baghli and M. Benchohra, “Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay,” Different. Integral Equat., 23, 31–50 (2010).

    MATH  MathSciNet  Google Scholar 

  6. S. Baghli, M. Benchohra, and J. J. Nieto, “Global uniqueness results for partial functional and neutral functional evolution equations with state-dependent delay,” J. Adv. Res. Different. Equat., 2, No. 3, 35–52 (2010).

    Google Scholar 

  7. H. F. Bohnenblust and S. Karlin, “On a theorem of ville. Contribution to the theory of games,” Ann. Math. Stud.,, No. 24, 155–160 (1950).

  8. C. Corduneanu, Integral Equations and Stability of Feedback Systems, Acad. Press, New York (1973).

    MATH  Google Scholar 

  9. K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin; New York (1992).

    Book  MATH  Google Scholar 

  10. Z. Denkowski, S. Migorski, and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Acad./Plenum Publ., Boston (2003).

    Book  Google Scholar 

  11. S. Djebali, L. Gorniewicz, and A. Ouahab, Solution Sets for Differential Equations and Inclusions,Walter de Gruyter, Berlin (2013).

    Book  MATH  Google Scholar 

  12. A. Friedman, Partial Differential Equations, Holt, Rinehat, andWinston, New York (1969).

    MATH  Google Scholar 

  13. Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis,. Vol. I: Theory, Kluwer, Dordrecht, etc. (1997).

  14. J. K. Hale and S. M. Verduyn Lunel, “Introduction to functional differential equations” in: Appl. Math. Sci., 99, Springer- Verlag, New York (1993).

  15. V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations, Kluwer Acad. Publ., Dordrecht (1999).

    Book  MATH  Google Scholar 

  16. A. Lasota and Z. Opial, “An application of the Kakutani–Ky-Fan theorem in the theory of ordinary differential equations,” Bull. Acad. Pol. Sci. Sér. Sci. Math., Astron. Phys., 13, 781–786 (1965).

  17. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983).

    Book  MATH  Google Scholar 

  18. J.Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York (1996).

  19. K. Yosida, Functional Analysis, Springer, Berlin (1980).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benchohra.

Additional information

Published in Neliniini Kolyvannya, Vol. 17, No. 2, pp. 161–169, April–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchohra, M., Medjadj, I. Global Existence Results for Functional Differential Inclusions with Delay. J Math Sci 208, 477–486 (2015). https://doi.org/10.1007/s10958-015-2462-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2462-x

Keywords

Navigation