Skip to main content

Combined Algorithm of Domain Decomposition and h -Adaptation for the Solution of Contact Problems of Elasticity

We propose a combined algorithm for the solution of the problems of contact of elastic bodies. This algorithm combines the iterative method of domain decomposition and the h -adaptive scheme based on the comparison of the results of the finite-element and boundary-element methods. The numerical analysis of a test problem shows that the mesh refinement performed by using the proposed algorithm reveals singularities of the stress field near the contact area and the total number of unknowns significantly decreases, as compared with the case of uniform partition.

References

  1. I. I. Vorovich, V. M. Aleksandrov, and V. A. Babeshko, Nonclassical Mixed Problems of the Theory of Elasticity [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  2. A. Ya. Grigorenko, I. I. Dyyak, S. I. Matysyak, and I. I. Prokopyshyn, “Domain decomposition methods applied to solve frictionless-contact problems for multilayer elastic bodies,” Prikl. Mekh., 46, No. 4, 25–37 (2010); English translation: Int. Appl. Mech., 46, No. 4, 388–399 (2010).

  3. A. Ya. Grigorenko, I. I. Dyyak, and I. I. Prokopyshyn, “Domain decomposition method with hybrid approximations applied to solve problems of elasticity,” Prikl. Mekh., 44, No. 11, 18–29 (2008); English translation: Int. Appl. Mech., 44, No. 11, 1213–1222 (2008).

  4. I. I. Dyyak and I. I. Prokopyshyn, “Convergence of the Neumann parallel scheme of the domain decomposition method for problems of frictionless contact between several elastic bodies,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 3, 78–89 (2009); English translation: J. Math. Sci., 171, No. 4, 516–533 (2010).

  5. I. Dyyak and Yu. Yashchuk, “A finite boundary-element estimator of errors of the finite-element method for elasticity problems,” Visn. Lviv. Univ. Ser. Prykl. Mat. Inf., Issue 19, 47–55 (2013).

  6. A. S. Kravchuk, “Statement of the problem of contact of several deformable bodies as a problem of nonlinear programming,” Prikl. Mat. Mekh., 42, No. 3, 467–474 (1978).

    MathSciNet  Google Scholar 

  7. V. I. Kuz’menko, “On the variational approach to the theory of contact problems for nonlinearly elastic laminated bodies,” Prikl. Mat. Mekh., 43, No. 5, 893–901 (1979).

    MathSciNet  Google Scholar 

  8. A. I. Lur’e, Elasticity Theory [in Russian], Nauka, Moscow, 1970.

    Google Scholar 

  9. I. I. Prokopyshyn, I. I. Dyyak, and R. M. Martynyak, “Numerical analysis of the problems of contact of three elastic bodies by the domain decomposition methods,” Fiz.-Khim. Mekh. Mater., 49, No. 1, 46–55 (2013); English translation: Mater. Sci., 49, No. 1, 45–58 (2013).

  10. M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York (2000).

    MATH  Book  Google Scholar 

  11. P. Avery and C. Farhat, “The FETI family of domain decomposition methods for inequality-constrained quadratic programming: Application to contact problems with conforming and nonconforming interfaces,” Comput. Meth. Appl. Mech. Eng., 198, 1673–1683 (2009).

    MATH  MathSciNet  Article  Google Scholar 

  12. G. C. Buscaglia, R. Duran, E. A. Fancello, R. A. Feijoo, and C. Padra, “An adaptive finite element approach for frictionless contact problems,” Int. J. Numer. Meth. Eng., 50, 395–418 (2001).

    MATH  MathSciNet  Article  Google Scholar 

  13. J. Céa, Optimisation: Théorie et Algorithmes, Dunod, Paris (1971).

    MATH  Google Scholar 

  14. I. Dyyak, S. Matysiak, and Yu. Yashchuk, “FEM-BEM based error estimator in elasticity problems,” in: Proc. of the 19 th Internat. Conf. on Comput. Meth. in Mech. Short Papers, Warszawa (2011), pp. 175–176.

  15. I. I. Dyyak, I. I. Prokopyshyn, and I. A. Prokopyshyn, “Penalty Robin–Robin domain decomposition methods for unilateral multibody contact problems of elasticity: Convergence results,” http://arxiv.org/pdf/1208.6478.pdf, 2012.

  16. D. Franke, A. Düster, V. Nübel, and E. Rank, “A comparison of the h -, p -, hp -, and rp -version of the FEM for the solution of the 2D Hertzian contact problem,” Comput. Mech., 45, No. 5, 513–522 (2010).

    MATH  Article  Google Scholar 

  17. L. Gallimard and T. Sassi, “A posteriori error analysis of a domain decomposition algorithm for unilateral contact problem,” Comput. Struct., 88, 879–888 (2010).

    Article  Google Scholar 

  18. J. Haslinger, R. Kučera, and T. Sassi, “A domain decomposition algorithm for contact problems: Analysis and implementation,” Math. Model. Nat. Phenom., 4, No. 1, 123–146 (2009).

    MATH  MathSciNet  Article  Google Scholar 

  19. I. Hlavaček, J. Haslinger, J. Nečas, and J. Lovišek, Solution of Variational Inequalities in Mechanics, Springer, New York (1988), Ser. Appl. Math. Sci., Vol. 66.

  20. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton, Boston (2000).

    Google Scholar 

  21. N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia (1988).

    MATH  Book  Google Scholar 

  22. J. Koko, “Uzawa block relaxation domain decomposition method for a two-body frictionless contact problem,” Appl. Math. Lett., 22, 1534–1538 (2009).

    MATH  MathSciNet  Article  Google Scholar 

  23. A. Kravchuk and P. Neittaanmaki, Variational and Quasi-Variational Inequalities in Mechanics, Springer, Dordrecht (2007).

    MATH  Book  Google Scholar 

  24. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969).

    MATH  Google Scholar 

  25. I. I. Prokopyshyn, I. I. Dyyak, R. M. Martynyak, and I. A. Prokopyshyn, “Penalty Robin–Robin domain decomposition schemes for contact problems of nonlinear elasticity,” in: Lect. Notes Comput. Sci. Eng., Vol. 91, (2013), pp. 647–654.

    MathSciNet  Article  Google Scholar 

  26. B. Wohlmuth, “A mortar finite element method using dual spaces for the Lagrange multiplier,” SIAM J. Numer. Anal., 38, No. 3, 989–1012 (2000).

    MATH  MathSciNet  Article  Google Scholar 

  27. B. Wohlmuth, “Variationally consistent discretization schemes and numerical algorithms for contact problems,” Acta Numer., 20, 569–734 (2011).

    MATH  MathSciNet  Article  Google Scholar 

  28. P. Wriggers, Computational Contact Mechanics, Springer, Berlin (2006).

    MATH  Book  Google Scholar 

  29. P. Wriggers, “Finite element algorithms for contact problems,” Arch. Comput. Meth. Eng., 2, No. 4, 1–49 (1995).

    MathSciNet  Article  Google Scholar 

  30. P. Wriggers and O. Scherf, “Different a posteriori error estimators and indicators for contact problems,” Math. Comput. Model., 28, Nos. 4–8, 437–447 (1998).

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 56, No. 4, pp. 96–109, October–December, 2013.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dyyak, I.I., Prokopyshyn, I.I. & Yashchuk, Y.O. Combined Algorithm of Domain Decomposition and h -Adaptation for the Solution of Contact Problems of Elasticity. J Math Sci 208, 383–399 (2015). https://doi.org/10.1007/s10958-015-2453-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2453-y

Keywords

  • Variational Inequality
  • Contact Problem
  • Elastic Body
  • Domain Decomposition
  • Posteriori Error