Skip to main content

Representations of Gelfand–Graev Type for the Unitriangular Group

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the analog of Gelfand–Graev representations for the unitriangular group. We obtain the decomposition into a sum of irreducible representations, prove that these representations are multiplicity free, and calculate the Hecke algebra.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. A. M. André, “Basic characters of the unitriangular group,” J. Algebra, 175, 287–319 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    C. A. M. André, “On the coadjoint orbits of the unitriangular group,” J. Algebra, 180, 587–630 (1995).

    Article  Google Scholar 

  3. 3.

    C. A. M. André, “The regular character of the unitriangular group,” J. Algebra, 201, 1–52 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    C. A. M. André, “Basic characters of the unitriangular group (for arbitrary primes),” Proc. Am. Math. Soc., 130, No. 7, 1943–1954 (2002).

    Article  MATH  Google Scholar 

  5. 5.

    C. A. M. André, “Hecke algebra for the basic representations of the unitriangular group,” Proc. Am. Math. Soc., 132, No. 4, 987–996 (2003).

    Article  Google Scholar 

  6. 6.

    J. Dixmier, Algèbras enveloppantes, Gauthier-Villars, Paris (1974).

    Google Scholar 

  7. 7.

    I. M. Gelfand and M. I. Graev, “Categories of group representations and problem of classification of irreducible representations,” Dokl. Akad. Nauk SSSR, 146, No. 4, 757–760 (1962).

    MathSciNet  Google Scholar 

  8. 8.

    I. M. Gelfand and M. I. Graev, “Construction of irreducible representations of simple algebraic groups over a finite field,” Dokl. Akad. Nauk SSSR, 147, No. 3, 529–532 (1962).

    MathSciNet  Google Scholar 

  9. 9.

    M. V. Ignatev and A. N. Panov, “Coadjoint orbits for the group UT(7,K),” Fundam. Appl. Math., 13, No. 5, 127–159 (2007).

    Google Scholar 

  10. 10.

    I. M. Isaacs and D. Karagueuzian, “Conjugacy in groups of upper triangular matrices,” J. Algebra, 202, 704–711 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    D. Kazhdan, “Proof of Springer’s hypothesis,” Israel J. Math., 28, No. 4, 272–286 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Usp. Mat. Nauk, 17, No. 4, 57–110 (1962).

    MathSciNet  Google Scholar 

  13. 13.

    A. A. Kirillov, Lectures on the Orbit Method Grad. Stud. Math., Vol. 64, Amer. Math. Soc., Providence (2002).

  14. 14.

    A. N. Panov, The Orbit Method for Unipotent Groups over Finite Field, arXiv:1212.1980.

  15. 15.

    J. Sangroniz, “Characters of algebra groups and unitriangular groups,” in: Finite Groups, Walter de Gruyter, Berlin (2004), pp. 335–349.

  16. 16.

    R. Steinberg, Lectures on Chevalley Groups, Yale university (1968).

  17. 17.

    T. Yokonuma, “Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini,” C. R. Acad. Sci. Paris, 264, 344–347 (1967).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Panov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 18, No. 3, pp. 161–178, 2013.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panov, A.N. Representations of Gelfand–Graev Type for the Unitriangular Group. J Math Sci 206, 570–582 (2015). https://doi.org/10.1007/s10958-015-2334-4

Download citation

Keywords

  • Irreducible Representation
  • Irreducible Component
  • Associative Algebra
  • Representation Versus
  • Chevalley Group