Skip to main content

Methods of Computational Topology for the Analysis of Dynamics of Active Regions of the Sun

Abstract

The aim of this work is to diagnose pre-flare dynamics of magnetic fields in the active regions of the Sun on the HMI SDO magnetograms. We use a tool based on the methods of the geometry of random fields and computational topology. The results show that the proposed formalism allows one to find some precursors of major flares for practically significant time slots.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. J. Adler, The Geometry of Random Fields, Wiley, New York (1981).

    MATH  Google Scholar 

  2. 2.

    R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Monogr. Math., Springer, New York (2007).

    MATH  Google Scholar 

  3. 3.

    O. Bobrowski, Algebraic Topology of Random Fields and Complexes, PhD Thesis (2012).

  4. 4.

    J. M. Borrero and K. Ichimoto, “Magnetic structure of sunspots,” Living Rev. Sol. Phys., 8, 4 (2011).

    Google Scholar 

  5. 5.

    Y. Cui, R. Li, L. Zhang, Y. He, and H. Wang, “Correlation between solar flare productivity and photospheric magnetic field properties,” Sol. Phys., 237, 45–59 (2006).

    Article  Google Scholar 

  6. 6.

    H. Edelsbrunner and J. Harer, Computational Topology. An Introduction, Amer. Math. Soc., Providence (2010).

    MATH  Google Scholar 

  7. 7.

    D. A. Falconer, A. F. Barghouty, I. Khazanov, and R. L. Moore, “A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active region free magnetic energy,” Space Weather, 9, S04003 (2011).

    Article  Google Scholar 

  8. 8.

    R. Ghrist, “Barcodes: The persistent topology of data,” Bull. Am. Math. Soc., 45, No. 1, 61–75 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    S. Gu, Y. Zheng, and C. Tomasi, “Critical nets and beta-stable features for image matching,” in: Computer Vision — ECCV 2010, Lect. Notes Comput. Sci., Vol. 6313, Springer, Berlin (2010), pp. 663–676.

  10. 10.

    B. M. ter Haar Romeny, Front-End Vision and Multi-Scale Image Analysis, Springer, Berlin (2003).

    Book  Google Scholar 

  11. 11.

    L. M. Karimova, O. A. Kruglun, N. G. Makarenko, and N. V. Romanova, “Power law distribution in statistics of failures in operation of spacecraft onboard equipment,” Cosm. Res., 49, 458–463 (2011).

    Article  Google Scholar 

  12. 12.

    I. S. Knyazeva, N. G. Makarenko, and L. M. Karimova, “Topology of magnetic fields from MDI data: Background field,” Astron. Rep., 54, 747–755 (2010).

    Article  Google Scholar 

  13. 13.

    I. S. Knyazeva, N. G. Makarenko, and M. A. Livshits, “Detection of new emerging magnetic flux from the topology of SOHO/MDI magnetograms,” Astron. Rep., 55, 463–471 (2011).

    Article  Google Scholar 

  14. 14.

    J. Koenderink, “The structure of images,” Biol. Cybern., 50, 363–370 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer Academic, Dordrecht (1994).

    Book  Google Scholar 

  16. 16.

    B. W. Lites, “The topology and behavior of magnetic fields emerging at the solar photosphere,” Space Sci. Rev., 144, 197–212 (2009).

    Article  Google Scholar 

  17. 17.

    D. W. Longcope, “Topological methods for the analysis of solar magnetic fields,” Living Rev. Sol. Phys., 2, 7 (2005).

    Google Scholar 

  18. 18.

    T. Magara, “Investigation into the subsurface magnetic structure in an emerging flux region on the Sun based on a comparison between Hinode’s observations and numerical simulation,” Astrophys. J., 685, L91 (2008).

    Article  Google Scholar 

  19. 19.

    N. G. Makarenko, I. S. Knyazeva, and L. M. Karimova, “Magnetic field topology by MDI data: Active region,” Astron. Lett., 38, 531–542 (2012).

    Article  Google Scholar 

  20. 20.

    J. P. Mason and J. T. Hoeksema, “Testing automated solar flare forecasting with 13 years of MDI synoptic magnetograms,” Astrophys. J., 723, 634–640 (2010).

    Article  Google Scholar 

  21. 21.

    Y. Matsumoto, An Introduction to Morse Theory, Amer. Math. Soc., Providence (2002).

    MATH  Google Scholar 

  22. 22.

    T. Pulkkinen, “Space weather: terrestrial perspective,” Living Rev. Sol. Phys., 4, 1 (2007).

    Google Scholar 

  23. 23.

    P. H. Scherrer, J. Schou, R. I. Bush, et al., “The Helioseismic and Magnetic Imager (HMI). Investigation for the Solar Dynamics Observatory (SDO),” Sol. Phys., 275, 207–227 (2012).

    Article  Google Scholar 

  24. 24.

    R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Cambridge Univ. Press, Cambridge (1993).

    MATH  Google Scholar 

  25. 25.

    J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London (1988).

    Google Scholar 

  26. 26.

    J. B. Smith, Jr., “Predicting activity levels for specific locations within solar active regions,” in: P. S. McIntosh and M. Dryer, eds., Solar Activity Observations and Predictions, MIT, Cambridge (1972).

    Google Scholar 

  27. 27.

    X. Sun, J. T. Hoeksema, Y. Liu, T. Wiegelmann, K Hayashi, Q. Chen, and J. Thalmann, “Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation,” Astrophys. J., 74, No. 2, 1–15 (2012).

    Google Scholar 

  28. 28.

    J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart (1998).

    MATH  Google Scholar 

  29. 29.

    A. P. Witkin, “Scale space filtering,” in: Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany (1983 ), pp. 1019–1022.

  30. 30.

    K. J. Worsley, “The geometry of random images,” Chance, 9, 27 (1996).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Makarenko.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 18, No. 2, pp. 79–93, 2013.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makarenko, N., Malkova, D., Machin, M. et al. Methods of Computational Topology for the Analysis of Dynamics of Active Regions of the Sun. J Math Sci 203, 806–815 (2014). https://doi.org/10.1007/s10958-014-2170-y

Download citation

Keywords

  • Active Region
  • Euler Characteristic
  • Betti Number
  • Solar Disk
  • Mathematical Morphology