Skip to main content
Log in

Моdeling and Investigation of the Thermomechanical Behavior of Heat-Sensitive Bodies with Regard for the Influence of Thermal Radiation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We perform a survey of the state of investigations in the radiation thermomechanics of bodies of different transparency with respect to thermal radiation. By using the procedure proposed for the solution of the nonlinear problems of heat transfer and thermoelasticity based on the finite-element method, we study the influence of the heat sensitivity of thermal, mechanical, and radiation characteristics on the stresses acting in semitransparent and opaque bodies for the model problem for irradiated heat-sensitive layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Blokh, Yu. A. Zhuravlev, and L. N. Ryzhkov, Radiation Heat Transfer: A Handbook [in Russian], Énergoatomizdat, Moscow (1991).

    Google Scholar 

  2. A. R. Gachkevich, Thermoelasticity of Electroconducting Bodies Subjected to the Action of Electromagnetic Radiation of the Infrared Frequency Range [in Russian], Preprint No. 10-93, Podstrigach Institute for Applied Problems of Mechanics and Mathematics, Lviv (1993).

  3. A. R. Gachkevich and V. Ya. Boichuk, “Thermomechanical behavior of nonmetallic electrical conductors during high-temperature treatment,” Mat. Metody Fiz.-Mekh. Polya, 39, No. 1, 74–79 (1996); English translation : J. Math. Sci., 86, No. 2, 2585–2589 (1997).

    Article  Google Scholar 

  4. A. R. Gachkevich and V. Ya. Boichuk, “Thermal stress of a long cylinder heated by thermal radiation,” Prikl. Mekh., 23, No. 4, 18–23 (1987); English translation : Int. Appl. Mech., 23, No. 4, 328–332 (1987).

    Google Scholar 

  5. A. R. Gachkevich, B. S. Malkiel’, Yu. R. Sosnovyi, and R. F. Terletskii, “Mathematical modeling and the study of the heat exchange process in color kinescopes,” in: Mathematical Methods and Physicomechanical Fields [in Russian], Issue 30 (1989), pp. 57–63; English translation : J. Sov. Math., 63, No. 3, 358–363 (1993).

  6. A. R. Hachkevych, R. F. Terletskii, and M. B. Brukhal’, “Some problems of mathematical modeling in thermomechanics of bodies of various transparencies subjected to thermal irradiation,” Mat. Metody Fiz.-Mekh. Polya, 51, No. 3, 202–219 (2008); English translation : J. Math. Sci., 165, No. 3, 403–425 (2010).

    Article  Google Scholar 

  7. O. R. Hachkevych, R. F. Terlets’kyi, and T. L. Kurnyts’kyi, Mechanothermodiffusion in Partially Transparent Bodies, in: Ya. I. Burak and R. M. Kushnir (editors), Modeling and Optimization in the Thermomechanics of Electroconducting Inhomogeneous Bodies [in Ukrainian], Vol. 2, SPOLOM, Lviv (2007).

    Google Scholar 

  8. O. R. Hachkevych, R. F. Terlets’kyi, Yu. R. Sosnovyi, and M. B. Brukhal’, “Mechanical behavior of cooled bodies with regard for the emission of heat energy,” Fiz.-Khim. Mekh. Mater, 46, No. 1, 42–50 (2010); English translation : Mater. Sci., 46, No. 1, 47–55 (2010).

    Article  Google Scholar 

  9. B. A. Grigor’ev, Pulse Heating by Radiation [in Russian], Vol. 2, Nauka, Moscow (1974).

    Google Scholar 

  10. O. B. Humenchuk, Thermal stress State of Partially Transparent Bodies with Cavities under Thermal Radiation [in Ukrainian], Candidate-Degree Thesis (Phys., Math.), Lviv (2008).

    Google Scholar 

  11. Y. Jaluria, Natural Convection: Heat and Mass Transfer, Pergamon, New York (1980).

    Google Scholar 

  12. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, McGraw-Hill, New York (1972).

    Google Scholar 

  13. A. E. Sheindlin (editor), Radiation Properties of Solid Materials: Handbook [in Russian], Énergiya, Moscow (1974).

    Google Scholar 

  14. A. D. Kovalenko, Foundations of Thermoelasticity [in Russian], Naukova Dumka, Kiev (1970).

    Google Scholar 

  15. F. Kreit and W. Z. Black, Basic Heat Transfer, Harper and Row, New York (1980).

    Google Scholar 

  16. L. N. Lavrikov and Yu. F. Yurchenko, Thermal Properties of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  17. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  18. S. B. Maslenkov and E. A. Maslenkova, Steels and Alloys for High Temperatures: Handbook [in Russian], Part 1, Metallurgiya, Moscow (1991).

    Google Scholar 

  19. V. A. Petrov and N. V. Marchenko, Energy Transfer in Partially Transparent Solid Materials [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  20. V. S. Popovych and O. M. Vovk, “A procedure for the solution of the problem of conductive-radiation heat transfer between a cylindrical and an N-angular prismatic shells,” Mat. Metody Fiz.-Mekh. Polya, 47, No. 1, 158–168 (2004).

    MATH  Google Scholar 

  21. Yu. S. Postol’nyk and A. P. Ohurtsov, Nonlinear Applied Thermomechanics [in Ukrainian], NMTs VO MONU, Kyiv (2000).

    Google Scholar 

  22. N. A. Rubtsov, Radiation Heat Transfer in Continua [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  23. N. A. Rubtsov, A. M. Timofeev, and N. A. Savvinova, Combined Heat Transfer in Semitransparent Media [in Russian], Izd. SO RAN, Novosibirsk (2003).

    Google Scholar 

  24. R. F. Terletskii, Thermal stress State of Low-Electroconducting Bodies under the Action of Electromagnetic Radiation [in Russian], Candidate-Degree Thesis (Phys., Math., 01.02.04), Lviv (1988).

  25. R. F. Terletskii, O. P. Turii, and M. B. Brukhal’, “Problems of thermomechanics for irradiated bodies,” in: Theoretical and Applied Mechanics [in Russian], Issue 4(50) (2012), pp. 30–37.

  26. R. F. Terlets’kyi and O. P. Turii, “Thermomechanical behavior of a plate composed of layers with different transparencies under the action of thermal radiation,” Fiz.-Khim. Mekh. Mater., 43, No. 6, 17–26 (2007); English translation : Mater. Sci., 43, No. 6, 769–779 (2007).

    Article  Google Scholar 

  27. O. P. Turii, Thermal stress State of Layered Plates under Thermal Radiation [in Ukrainian], Candidate-Degree Thesis (Phys., Math.), Lviv (2010).

  28. C. A. Wert and R. M. Thomson, Physics of Solids, McGraw-Hill, New York (1964).

    Google Scholar 

  29. W. Espe, Technology of Electric Vacuum Devices [Russian translation], Vol. 2, Énergiya, Moscow (1968).

    Google Scholar 

  30. E. E. Anderson and R. Viskanta, “Effective thermal conductivity for heat transfer through semitransparent solids,” J. Am. Ceram. Soc., 56, No. 10, 541–546 (1973).

    Article  Google Scholar 

  31. F. Asllanaj, G. Jeandel, and J. R. Roche, “Numerical solution of radiation transfer equation coupled with nonlinear heat conduction equation,” Int. J. Numer. Method Heat Fluid Flow, 11, No. 5, 449–472 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. L. Burka and P. M. Likhanskii, “Transient radiation-conductive heating of plexiglas,” Prikl. Mekh. Tekh. Fiz., 42, No. 3, 101–106 (2001); English translation : J. Appl. Mech. Tech. Phys., 42, No. 3, 469–474 (2001).

    Article  Google Scholar 

  33. Chang Yan-Po and R. S. Smith (Jr.), ”Steady and transient heat transfer by radiation and conduction in a medium bounded by two coaxial cylindrical surfaces,” Int. J. Heat Mass Transfer, 13, No. 1, 69–80 (1970).

  34. H.-S. Chu and L.-C. Weng, “Transient combined conduction and radiation in anisotropically scattering spherical media,” J. Thermophys. Heat Transfer, 6, No. 3, 553–556 (1992).

    Article  Google Scholar 

  35. R. Coquard, D. Rochais, and D. Baillis, “Experimental investigations of the coupled conductive and radiation heat transfer in metallic/ceramic foams,” Int. J. Heat Mass Transfer, 52, No. 21-22, 4907–4918 (2009).

    Article  MATH  Google Scholar 

  36. Fan Tai-His and A. G. Fedorov, “Radiation transfer in a semitransparent hemispherical shell,” J. Quant. Spectroscopy RA, 73, No. 2-5, 285–296 (2002).

    Article  Google Scholar 

  37. R. Fernandes and J. Francis, “Combined conductive and radiation heat transfer in an absorbing, emitting, and scattering cylindrical medium,” Trans. ASME, J. Heat Transfer, 104, No. 4, 594–601 (1982).

    Article  Google Scholar 

  38. Kong Hoon Lee and R. Viskanta, “Two-dimensional combined conduction and radiation heat transfer: comparison of the discrete ordinates method and the diffusion approximation methods,” Numer. Heat Transfer, Part A, 39, No. 3, 205–225 (2001).

    Article  Google Scholar 

  39. M. Lazard, S. André, and D. Maillet, “Diffusivity measurement of semi-transparent media: model of the coupled transient heat transfer and experiments on glass, silica glass and zinc selenide,” Int. J. Heat Mass Transfer, 47, 477–487 (2004).

    Article  Google Scholar 

  40. B. J. van der Linden and R. M. M. Mattheij, “A new method for solving radiation heat problems in glass,” Int. J. Forming Processes, 2, No. 1-2, 41–61 (1999).

    Google Scholar 

  41. M. F. Modest, Radiation Heat Transfer, Academic, New York (2003).

    Google Scholar 

  42. C. Muresan, R. Vaillon, C. Menezo, and R. Morlot, “Discrete ordinates solution of coupled conductive radiation heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation,” J. Quant. Spectroscopy, RA, 84, No. 4, 551–562 (2004).

    Article  Google Scholar 

  43. T. H. Ping and M. Lallemand, “Transient radiation-conductive heat transfer in flat glasses submitted to temperature, flux and mixed boundary conditions,” Int. J. Heat Mass Transfer, 32, No. 5, 795–810 (1989).

    Article  Google Scholar 

  44. D. Schwander, G. Flamant, and G. Olalde, “Effects of boundary properties on transient temperature distributions in condensed semitransparent media,” Int. J. Heat Mass Transfer, 33, No. 8, 1685–1695 (1990).

    Article  Google Scholar 

  45. E. Sharbati, B. Safavisohi, and C. Aghanajafi, “Transient heat transfer analysis of a layer by considering the effect of radiation,” J. Fusion Energy, 23, No. 3, 207–215 (2004).

    Article  Google Scholar 

  46. N. Siedow, T. Grosan, D. Lochegnies, and E. Romero, “Application of a new method for radiation heat transfer to flat glass tempering,” J. Am. Ceram. Soc., 88, No. 8, 2181–2187 (2005).

    Article  Google Scholar 

  47. R. Siegel, “Transient effects of radiation transfer in semitransparent materials,” Int. J. Eng. Sci., 36, No. 12-14, 1701–1739 (1998).

    Article  Google Scholar 

  48. R. Siegel, “Transient heat transfer in a semitransparent radiating layer with boundary convection and surface reflections,” Int. J. Heat Mass Transfer, 39, No. 1, 69–79 (1996).

    Article  Google Scholar 

  49. R. Siegel, “Two-flux method for transient radiation transfer in a semitransparent layer,” Int. J. Heat Mass Transfer, 39, No. 5, 1111–1115 (1996).

    Article  MATH  Google Scholar 

  50. M.-H. Su and W. H. Sutton, “Transient conductive and radiation heat transfer in a silica window,” J. Thermophys. Heat Transfer, 9, No. 2, 370–373 (1995).

    Article  Google Scholar 

  51. W. H. Sutton, “A short time solution for coupled conduction and radiation in a participating slab geometry,” Trans. ASME, J. Heat Transfer, 108, No. 2, 465–466 (1986).

    Article  Google Scholar 

  52. G. Thömmes, “A linear iterative scheme for the fast solution of the radiation heat transfer equations for glass,” J. Comput. Phys., 193, No. 2, 544–562 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  53. C.-F. Tsai and G. Nixon, “Transient temperature distribution of a multilayer composite wall with effects of internal thermal radiation and conduction,” Numer. Heat Transfer, 10, No. 1, 95–101 (1986).

    Article  MATH  Google Scholar 

  54. J. R. Tsai and M. N. Özişik, “Transient, combined conduction and radiation in an absorbing, emitting, and isotropically scattering solid sphere,” J. Quant. Spectroscopy, RA, 38, No. 4, 243–251 (1987).

    Article  Google Scholar 

  55. P.-Y. Wang, H.-E. Cheng, and H.-P. Tan, “Transient thermal analysis of semitransparent composite layer with an opaque boundary,” Int. J. Heat Mass Transfer, 45, No. 2, 425–440 (2002).

    Article  MATH  Google Scholar 

  56. K. C. Weston and J. L. Hauth, “Unsteady, combined radiation and conduction in an absorbing, scattering, and emitting medium,” Trans. ASME, J. Heat Transfer, 95, No. 3, 357–364 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 56, No. 2, pp. 212–224, April–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terlets’kyi, R.F., Brukhal’, M.B. & Nemirovskii, Y.V. Моdeling and Investigation of the Thermomechanical Behavior of Heat-Sensitive Bodies with Regard for the Influence of Thermal Radiation. J Math Sci 203, 265–278 (2014). https://doi.org/10.1007/s10958-014-2106-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2106-6

Keywords

Navigation