Skip to main content
Log in

Approximate Solution of a Three-Dimensional Problem of Elastic Diffusion in an Orthotropic Layer

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider a three-dimensional nonstationary problem for an elastic layer with regard for diffusion and use a model of mechanical diffusion under the conditions of local equilibrium. The model includes a coupled system of equations of motion of the elastic body and the mass transfer equation. The asymptotic procedure of separation of variables is applied. This procedure enables us to reduce the multidimensional problem to a recursion sequence of one-dimensional problems solved with the help of Fourier series and the Laplace transformation with respect to time. The originals of the transforms of unknown functions are determined analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  2. V. A. Vestyak, A. V. Zemskov, and I. A. Fedorov, “Asymptotic separation of variables in the problem of thermoelasticity for the anisotropic layer with inhomogeneous boundary conditions,” Izv. Saratov. Univ. Nov. Ser., Ser. Mat. Mekh. Inf., 12, Issue 3, 50–56 (2012).

    Google Scholar 

  3. A. R. Hachkevych, A. V. Zemskov, and D. V. Tarlakovskii, “A linear model of coupled thermoelasticity with regard for diffusion for inhomogeneous anisotropic media,” Proc. of the XVII Internat. A.G. Gorshkov Symposium “Dynamic and technological problems of structural mechanics and continua” [in Russian], Tr-Print, Moscow (2011), Vol. 2, pp. 96–106.

    Google Scholar 

  4. V. A. Ditkin and A. P. Prudnikov, A Handbook on Operational Calculus [in Russian], Vysshaya Shkola, Moscow (1965).

    Google Scholar 

  5. V. S. Eremeev, Diffusion and Stresses [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  6. A. G. Knyazeva, Introduction to Locally Equilibrium Thermodynamics of Physical and Chemical Transformation in Deformable Media [in Russian], Tomsk Univ., Tomsk (1996).

    Google Scholar 

  7. A. G. Knyazeva, “On modeling of irreversible processes in materials with large number of internal surfaces,” Fiz. Mezomekh., 6, No. 5, 11–27 (2003).

    Google Scholar 

  8. B. Ya. Lyubov, Diffusion Processes in Inhomogeneous Solid Media [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  9. Ya. I. Burak and R. M. Kushnir (Eds.), Modeling and Optimization in Thermomechanics of Conducting Inhomogeneous Solids [in Ukrainian], Spolom, Lviv (2006–2011), Vols. 1–5.

  10. V. S. Pavlina, “Effect of diffusion upon the thermal stresses in the vicinity of a cylindrical cavity,” Fiz.-Khim. Mekh. Mater., 1, No. 4, 390–394 (1965); English translation: Mater. Sci., 1, No. 4, 265–268 (1965).

    Article  Google Scholar 

  11. Ya. S. Podstrigach, “Diffusion theory of the inelasticity of metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 67–72 (1965).

  12. Ya. S. Podstrigach and V. S. Pavlina, “Differential equations of thermodynamic processes in n-component solid solutions,” Fiz.-Khim. Mekh. Mater., 1, No. 4, 383–389 (1965); English translation: Mater. Sci., 1, No. 4, 259–264 (1965).

    Article  Google Scholar 

  13. Ya. S. Podstrigach, R. N. Shvets, and V. S. Pavlina, “The quasistatic problem of thermal diffusion for deformed solid bodies,” Prikl. Mekh., 7, No. 12, 11–16 (1971); English translation: Int. Appl. Mech., 7, No. 12, 1300–1304 (1971).

    Google Scholar 

  14. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer, Berlin-Göttingen-Heidelberg (1959).

    Book  MATH  Google Scholar 

  15. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  16. G. A. Maugin and W. Muschik, “Thermodynamics with internal variables. Part I. General concepts,” J. Nonequilibr. Thermodyn., 19, No. 3, 217–249 (1994).

    MATH  Google Scholar 

  17. G. A. Maugin and W. Muschik, “Thermodynamics with internal variables. Part II. Applications,” J. Nonequilibr. Thermodyn., 19, No. 3, 250–289 (1994).

    Google Scholar 

  18. A. H. Nayfeh, Perturbation Methods, Wiley, New York (1973).

    MATH  Google Scholar 

  19. K. P. Zolnikov, S. G. Psakh’e, and V. E. Panin, “Alloy phase diagrams using temperature, concentration and density as variables,” J. Phys. F : Met. Phys., 16, No. 8, 1145–1152 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 56, No. 2, pp. 178–190, April–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemskov, A.V., Tarlakovskii, D.V. Approximate Solution of a Three-Dimensional Problem of Elastic Diffusion in an Orthotropic Layer. J Math Sci 203, 221–238 (2014). https://doi.org/10.1007/s10958-014-2103-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2103-9

Keywords

Navigation