Skip to main content
Log in

Operator Lipschitz Functions and Model Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let H denote the space of bounded analytic functions on the upper half-plane ℂ+. We prove that each function in the model space H ∩ Θ\( \overline{H^{\infty }} \) is an operator Lipschitz function on ℝ if and only if the inner function Θ is a usual Lipschitz function, i.e., Θ′ ∈ H . Let (OL)′(ℝ) denote the set of all functions fL whose antiderivative is operator Lipschitz on the real line ℝ. We prove that H ∩ Θ\( \overline{H^{\infty }} \) ⊂ (OL)′(ℝ) if Θ is a Blaschke product with zeros satisfying the uniform Frostman condition. We also deal with the following questions. When does an inner function Θ belong to (OL)′(ℝ)? When does each divisor of an inner function Θ belong to (OL)′(ℝ)? As an application, we deduce that (OL)′(ℝ) is not a subalgebra of L (ℝ). Another application is related to a description of the sets of discontinuity points for the derivatives of operator Lipschitz functions. We prove that a set ℰ,ℰ ⊂ ℝ, is a set of discontinuity points for the derivative of an operator Lipschitz function if and only if ℰ is an F σ set of first category. A considerable proportion of the results of the paper is based on a sufficient condition for operator Lipschitzness which was obtained by Arazy, Barton, and Friedman. We also give a sufficient condition for operator Lipschitzness which is sharper than the Arazy–Barton–Friedman condition. Bibliography: 27 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Ahern and D. N. Clark, “Radial Nth derivatives of Blaschke products,” Math. Scand., 28, 189–201 (1971).

    MathSciNet  MATH  Google Scholar 

  2. A. B. Aleksandrov, “Operator Lipschitz functions and linear fractional transformations,” Zap. Nauchn. Semin. POMI, 401, 5–52 (2012).

    Google Scholar 

  3. A. B. Aleksandrov and V. V. Peller, “Operator Hölder–Zygmund functions,” Advances in Math., 224, 910–966 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. B. Aleksandrov and V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities,” Indiana Univ. Math. J., 59:4, 1451–1490 (2010).

    Article  MathSciNet  Google Scholar 

  5. A. B. Aleksandrov and V. V. Peller, “Operator and commutator moduli of continuity for normal operators,” Proc. London Math. Soc., 105:4, 821–851 (2012).

    Article  MathSciNet  Google Scholar 

  6. J. Arazy, T. Barton, and Y. Friedman, “Operator differentiable functions,” Int. Equat. Oper. Theory, 13, 462–487 (1990).

    MathSciNet  Google Scholar 

  7. K. M. Dyakonov, “Entire functions of exponentsial type and model spaces in H p,” Zap. Nauchn. Semin. LOMI, 190, 81–100 (1991).

    Google Scholar 

  8. K. M. Dyakonov, “Differentiation in star-invariant subspaces. I. Boundedness and compactness,” J. Funct. Anal., 192, 387–409 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. M. Dyakonov, “Meromorphic functions and their derivatives: equivalence of norms,” Indiana Univ. Math. J., 57, 1557–1571 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Frostman, “Sur les produits de Blaschke,” Kungl. Fysiogr. Sällsk. Lund Förh., 12, 169–182 (1942).

    MathSciNet  Google Scholar 

  11. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York (1981).

    MATH  Google Scholar 

  12. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer (2000).

  13. S. V. Hruščhev and S. A. Vinogradov, “Inner functions and multipliers of Cauchy type integrals,” Ark. Mat., 19, 23–42 (1981).

    Article  MathSciNet  Google Scholar 

  14. K. Yosida, Functional Analysis, Springer-Verlag, Berlin-Göttingen-Heidelberg (1965).

    Book  MATH  Google Scholar 

  15. B. E. Johnson and J. P. Williams, “The range of a normal derivation,” Pacific J. Math., 58, 105–122 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Kamowitz, “On operators whose spectrum lies on a circle or a line,” Pacific J. Math., 20, 65–68 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Kissin and V. S. Shulman, “On a problem of J. P. Williams,” Proc. Amer. Math. Soc., 130, 3605–3608 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Kissin and V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions,” Proc. Edinb. Math. Soc. (2), 48, 151–173 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Kissin and V. S. Shulman, “On fully operator Lipschitz functions,” J. Funct. Anal., 253, 711–728 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Kissin, V. S. Shulman, and L. B. Turowska, “Extension of operator Lipschitz and commutator bounded functions,” Oper. Theory Adv. Appl., 171, 225–244 (2006).

    Article  MathSciNet  Google Scholar 

  21. P. Koosis, Introduction to H p Spaces, Cambridge Univ. Press (1980).

    MATH  Google Scholar 

  22. K. Kuratowski, Topology, Vol. 1, Academic Press, New York–London; PWN-Polish Scientific Publishers, Warszawa, XX (1966).

  23. I. P. Natanson, Theory of Functions of a Real Variable [in Russian], Moscow (1974).

  24. V. V. Peller, “Hankel operators in the theory of perturbations of unitary and self-adjoint operators,” Funkts. Anal. Prilozh., 19:2, 37–51 (1985).

    MathSciNet  Google Scholar 

  25. V. V. Peller, “Hankel operators in the perturbation theory of unbounded self-adjoint operators,” in: Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York (1990), pp. 529–544.

    Google Scholar 

  26. G. Pisier, “Similarity problems and completely bounded maps,” Second, expanded edition. Includes the solution to “The Halmos problem,” Lect. Notes Math., 1618 (2001).

  27. W. Rudin, Function Theory in the Unit Ball ofn, Grundlehren der math. Wiss., Bd. 241, Springer-Verlag, New York, Heidelberg, Berlin (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Aleksandrov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 416, 2013, pp. 5–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.B. Operator Lipschitz Functions and Model Spaces. J Math Sci 202, 485–518 (2014). https://doi.org/10.1007/s10958-014-2057-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2057-y

Keywords

Navigation