Skip to main content
Log in

On Some Perturbations of the Total Variation Image Inpainting Method. Part i: Regularity Theory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We investigate modifications of the total variation image inpainting model and discuss the existence as well as the smoothness of solutions to these new variational problems. We emphasize that our variant of a linear growth regularization is completely discussed in the Sobolev space W1 1 without passing to a relaxed version in the space of functions with bounded variation. Our analysis mainly concentrates on the theoretical background of the problems under consideration. Nevertheless, first computational experiments indicate that our model is numerically comparable with the TV-model with the advantage of a clear underlying analysis presented in the following. Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Arias, V. Casseles, and G. Sapiro, A Variational Framework for Non-Local Image Inpainting, IMA Preprint Series No. 2265 (2009).

  2. M. Burger, L. He, and C.-B. Schönlieb, “Cahn-Hilliard inpainting and a generalization for grayvalue images”, SIAM J. Imaging Sci. 2, No. 4, 1129–1167 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bertalmio, V. Caselles, S. Masnou, and G. Sapiro, Inpainting. www.math.univlyon1.fr/ masnou/fichiers/publications/survey.pdf

  4. T. F. Chan, S. H. Kang, and J. Shen, “Euler’s elastica and curvature based inpaintings”, SIAM J. Appl. Math. 63, No. 2, 564–592 (2002).

    MathSciNet  MATH  Google Scholar 

  5. T. F. Chan and J. Shen, “Mathematical models for local nontexture inpaintings”, SIAM J. Appl. Math. 62, No. 3, 1019–1043 (2001/02).

    MathSciNet  Google Scholar 

  6. K. Papafitsoros, B. Sengul, and C.-B. Schönlieb, Combined First and Second Order Total Variation Impainting Using Split Bregman, IPOL Preprint (2012).

    Google Scholar 

  7. J. Shen, Inpainting and the fundamental problem of image processing, SIAM News 36, No. 5, 1–4 (2003).

    Google Scholar 

  8. M. Bildhauer and M. Fuchs, “Image inpainting with energies of linear growth. A collection of proposals,” J. Math. Sci., New York 196, No. 4, 490–497 (2014).

    Article  Google Scholar 

  9. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel (1984).

  10. R. A. Adams, Sobolev Spaces, Academic Press, New York etc. (1975).

    MATH  Google Scholar 

  11. M. Bildhauer, Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions, Lect. Notes Math. 1818, Springer, Berlin etc. (2003).

  12. M. Bildhauer and M. Fuchs, “On some perturbations of the total variation image inpainting method. Part II: relaxation and and dual variational formulation,” J. Math. Sci., New York [To appear]

  13. M. Bildhauer, M. Fuchs, and Chr. Tietz, On a Class of Variational Problems with Linear Growth Related to Image Inpainting, Preprint Saarland University.

  14. M. Bildhauer and M. Fuchs, “A variational approach to the denoising of images based on different variants of the TV-regularization”, Appl. Math. Optim. 66, No. 3, 331–361 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Giaquinta, G. Modica, and J. Souček, Cartesian Currents in the Calculus of Variations I Springer, Berlin etc. (1998).

  16. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton (1983).

    MATH  Google Scholar 

  17. J. Frehse and G. Seregin, “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening,” Transl. Am. Math. Soc. 193, 127–152 (1999).

    MathSciNet  Google Scholar 

  18. A. Apushkinskaya, M. Bildhauer and M. Fuchs, “Steady states of anisotropic generalized Newtonian fluids,” J. Math. Fluid Mech. 7, 261–297 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Bildhauer and M. Fuchs, “A regularity result for stationary electrorheological fluids in two dimensions,” Math. Meth. Appl. Sci. 27, 1607–1617 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Frehse, “Two dimensional variational problems with thin obstacles,” Math. Z. 143, 279– 288 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  21. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moskow (1964).

    MATH  Google Scholar 

  22. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bildhauer.

Additional information

Translated from Problemy Matematicheskogo Analiza 76, August 2014, pp. 39–52.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildhauer, M., Fuchs, M. On Some Perturbations of the Total Variation Image Inpainting Method. Part i: Regularity Theory. J Math Sci 202, 154–169 (2014). https://doi.org/10.1007/s10958-014-2039-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2039-0

Keywords

Navigation