Skip to main content
Log in

Solution of the Integral Geometry Problem for 2-Tensor Fields by the Singular Value Decomposition Method

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the integral geometry problem of finding a symmetric 2-tensor field in a unit disk provided that the ray transforms of this field are known. We construct singular value decompositions of the operators of longitudinal, transversal, and mixed ray transforms that are the integrals of projections of a field onto the line where they are computed. We essentially use the results on decomposition of tensor fields and their representation in terms of potentials. The singular value decompositions are constructive and can be used for creating an algorithm for recovering a tensor field from its known ray characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Davison, “A singular value decomposition for the Radon transform in n-dimensional Euclidean space,” Numer. Funct. Anal. Optimization 3, 321–340 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform,” SIAM J. Math. Anal. 15, 621–633 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  3. E. T. Quinto, “Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform,” J. Math. Anal. Appl. 95, 437–448 (1985).

    Article  MathSciNet  Google Scholar 

  4. P. Maass, “The X-ray transform: singular value decomposition and resolution,” Inverse Probl. 3, 727–741 (1987).

    Article  MathSciNet  Google Scholar 

  5. A. K. Louis, “Incomplete data problems in X-ray computerized tomography. I: Singular value decomposition of the limited angle transform,” Numer. Math. 48, 251–262 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Yu. Derevtsov, S. G. Kazantsev, and T. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions,” J. Inverse Ill-Posed Probl. 15, No. 1, 1–38 (2007).

    Article  MathSciNet  Google Scholar 

  7. E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, and T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography,” J. Inverse Ill-Posed Probl. 19, No. 4–5, 689–715 (2011).

    MATH  MathSciNet  Google Scholar 

  8. S. G. Kazantsev and A. A. Bukhgeim, “Singular value decomposition for the 2D fan-beam radon transform of tensor fields,” J. Inverse Ill-Posed Probl. 12, No. 4, 1–35 (2004).

    MathSciNet  Google Scholar 

  9. N. E. Kochin, Vector Calculus and Foundations of Tensor Calculus [in Russian], ONTI, Moscow etc. (1934).

    Google Scholar 

  10. H. Weyl, “The method of orthogonal projection in potential theory,” Duke Math. J., No. 7, 411–444 (1940).

  11. E. Yu. Derevtsov, “An approach to direct reconstruction of a solenoidal part in vector and tensor tomography problems,” J. Inverse Ill-Posed Probl. 13, No. 3–6, 213–246 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Yu. Derevtsov, “Some problems of nonscalar tomography” [in Russian] In: Proceedings of Conferences, pp. 81–111, Siberian. Elect. Math. Reports 7 (2010).

  13. V. A. Sharafutdinov, Integral Geometry for Tensor Fields [in Russian], Nauka, Novosibirsk (1993); English transl.: VSP, Utrecht (1994).

    Book  Google Scholar 

  14. S. Deans, The Radon Transform and Some of its Applications, John Wiley & Sons, New York (1983).

    MATH  Google Scholar 

  15. F. Natterer, Mathematics of Computerized Tomography, SIAM, Philadelphia (2001).

    Book  MATH  Google Scholar 

  16. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in a Hilbert Space [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  17. A. K. Louis, Inverse and Ill-Posed Problems [in German], Teubner, Stuttgart (1989).

    Google Scholar 

  18. T. Schuster, The Method of Approximate Inverse: Theory and Applications, Springer, Heidelberg (2007).

    Book  Google Scholar 

  19. A. K. Louis, Feature Reconstruction in Inverse Problems // Inverse Probl. 27, No. 6, Article ID 065010 (2011).

  20. G. Szegö, Orthogonal Polynomials, Am. Math. Soc., Providence RI (1975).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Derevtsov.

Additional information

Translated from Vestnik Novosibirskogo Gosudarstvennogo Universiteta: Seriya Matematika, Mekhanika, Informatika 12, No. 3, 2012, pp. 73–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derevtsov, E.Y., Polyakova, A.P. Solution of the Integral Geometry Problem for 2-Tensor Fields by the Singular Value Decomposition Method. J Math Sci 202, 50–71 (2014). https://doi.org/10.1007/s10958-014-2033-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2033-6

Keywords

Navigation