Skip to main content
Log in

Steady-State Response of the Block Rock Mass to External Periodic Excitation and Resonance Condition

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The theory of deep rock mass is proposed as the complex hierarchy of block structures on the basis of the discontinuous and self-stressed rock mass structure in depth. We study the block structure of the rock mass steady-state response to the external periodic excitation. We get the resonance equation and the resonance condition for the block rock mass structure under external periodic excitations. The effects of the local mass and stress state between the adjacent rock blocks in block rock mass structure on the steady-state displacement of rock blocks are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and E. N. Sher, “Modeling the elastic wave propagation in a block medium under the impulse loading,” J. Min. Sci., 45, No. 5, 427–437 (2009).

    Article  Google Scholar 

  2. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, “Experimental investigation into the one-dimensional calculated model of wave propagation in block medium,” J. Min. Sci., 41, No. 3, 232–239 (2005).

    Article  Google Scholar 

  3. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, “On attenuation of pendulum-type waves in a block rock mass,” J. Min. Sci., 42, No. 5, 556–564 (2006).

    Article  Google Scholar 

  4. N. I. Aleksandrova and E. N. Sher, “Modeling of wave propagation in block media,” J. Min. Sci., 40, No. 6, 579–587 (2004).

    Article  Google Scholar 

  5. N. I. Aleksandrova and E. N. Sher, “Wave propagation in the 2d periodical model of a block-structured medium. Part I: Characteristics of waves under impulsive impact,” J. Min. Sci., 46, No. 6, 639–649 (2010).

    Article  Google Scholar 

  6. N. I. Aleksandrov, E. N. Sher, and A. G. Chernikov, “Effect of viscosity of partings in block-hierarchical media on propagation of low-frequency pendulum waves,” J. Min. Sci., 44, No. 3, 225–234 (2008).

    Article  Google Scholar 

  7. R. J. Allemang, D. L. Brown, and M. L. Soni, Experimental Modal Analysis and Dynamic Component Synthesis, Final Technical Report AFWAL-TR-87-3069, Vol. IV: System Modeling Techniques.

  8. S. N. Bagaev, V. N. Oparin, V. A. Orlov, S. V. Panov, and M. D. Parushkin, “Pendulum waves and their singling out in the laser deformograph records of the large earthquakes,” J. Min. Sci., 46, No. 3, 217–224 (2010).

    Article  Google Scholar 

  9. M. V. Kurlenya, V. V. Adushkin, V. V. Garnov, V. N. Oparin, A. F. Revuzhenko, and A. A. Spivak, “Variable-sign reaction of rocks to a dynamic action,” Dokl. Akad. Nauk SSSR, 323, No. 2, 263–265 (1992).

    Google Scholar 

  10. M. V. Kurlenya and V. N. Oparin, “Problems of nonlinear geomechanics. Part 1,” J. Min. Sci., 35, No. 3, 216–230 (1999).

    Article  Google Scholar 

  11. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Formation of elastic wave packets by the impulse agitation of block masses. The wave of pendulum-type v μ,” Dokl. Akad. Nauk SSSR, 333, No. 4, 515–521 (1993).

    Google Scholar 

  12. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Pendulum-type waves. Part I: State of the problem and measuring instrument and computer complexes,” J. Min. Sci., 32, No. 3, 159–163 (1996).

    Article  Google Scholar 

  13. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Pendulum-type waves. Part II: Experimental methods and main results of physical modeling,” J. Min. Sci., 32, No. 4, 245–273 (1996).

    Article  Google Scholar 

  14. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Pendulum waves. Part III: Data of on-site observations,” J. Min. Sci., 32, No. 5, 341–361 (1996).

    Article  Google Scholar 

  15. V. N. Oparin and B. F. Simonov, “Nonlinear deformation-wave processes in the vibrational oil geotechnologies,” J. Min. Sci., 46, No. 2, 95–112 (2010).

    Article  Google Scholar 

  16. M. A. Sadovskii, “Natural lumpiness of the rock,” Dokl. Akad. Nauk SSSR, 247, No. 4, 829–831 (1979).

    MathSciNet  Google Scholar 

  17. E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and A. G. Chernikov, “Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation,” J. Min. Sci., 43, No. 6, 585–591 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 56, No. 1, pp. 94–101, January–March, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai-xing, W., Yi-shan, P. & Dergachova, N. Steady-State Response of the Block Rock Mass to External Periodic Excitation and Resonance Condition. J Math Sci 201, 111–120 (2014). https://doi.org/10.1007/s10958-014-1977-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1977-x

Keywords

Navigation