A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds

We introduce a notion of the tangent bundle of a poset. In the case where the poset is the poset of simplices of a combinatorial manifold, the construction produces the best possible combinatorial model for the geometric compactified tangent bundle.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Björner, “Posets, regular CW complexes and Bruhat order,” European J. Combin., 5, No. 1, 7–16 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    A. Björner, “Topological methods,” in: Handbook of Combinatorics, Vol. 1, 2, Elsevier, Amsterdam (1995), pp. 1819–1872.

  3. 3.

    P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag, Basel (1999).

    Google Scholar 

  4. 4.

    A. E. Hatcher, “Higher simple homotopy theory,” Ann. Math. (2), 102, 101–137 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    J. F. P. Hudson, Piecewise Linear Topology, W. A. Benjamin, New York–Amsterdam (1969).

  6. 6.

    N. H. Kuiper and R. K. Lashof, “Microbundles and bundles. I. Elementary theory,” Invent. Math., 1, 1–17 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    N. H. Kuiper and R. K. Lashof, “Microbundles and bundles. II. Semisimplical theory,” Invent. Math., 1, 243–259 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    N. Levitt, Grassmannians and Gauss Maps in Piecewise-Linear Topology, Lect. Notes Math., 1366, Springer-Verlag, Berlin (1989).

  9. 9.

    R. MacPherson, “The combinatorial formula of Gabrielov, Gelfand and Losik for the first Pontrjagin class,” in: Séminaire Bourbaki, 29e année (1976/77), Lect. Notes Math., 677, Springer, Berlin (1978), Exp. No. 497, pp. 105–124.

  10. 10.

    R. MacPherson, “Combinatorial differential manifolds,” in: Topological Methods in Modern Mathematics (Stony Brook, 1991), Publish or Perish, Houston (1993), pp. 203–221.

  11. 11.

    J. P. May, Classifying Spaces and Fibrations, Mem. Amer. Math. Soc., 155 (1975).

  12. 12.

    J Milnor, Microbundles and Differential Structures (mimeographed notes), Princeton University (1961).

  13. 13.

    N. Mnëv, “Combinatorial fiber bundles and fragmentation of PL fiberwise homeomorphism,” Zap. Nauchn. Semin. POMI, 344, 56–173 (2007); arXiv:0708.4039.

    Google Scholar 

  14. 14.

    N. E. Mnëv and G. M. Ziegler, “Combinatorial models for the finite-dimensional Grassmannians,” Discrete Comput. Geom., 10, No. 3, 241–250 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    M. Steinberger, “The classification of PL fibrations,” Michigan Math. J., 33, No. 1, 11–26 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    J. H. C. Whitehead, “Simplicial spaces, nuclei and m-groups,” Proc. London Math. Soc., 45, 243–327 (1939).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Mnëv.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 421, 2014, pp. 113–125.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mnëv, N. A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds. J Math Sci 200, 710–717 (2014). https://doi.org/10.1007/s10958-014-1962-4

Download citation

Keywords

  • ■■■