On the Maximal Value of Spectral Gap for Some Birth and Death Processes*

We consider a class of birth and death processes with finally constant birth and death intensities and obtain the exact formula for spectral gap of the process in some situations. Moreover, we study spectral gap values for a number of famous queueing models.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. Aldous, L. Lováss, and P. Winkler, “Mixing time for uniformly ergodic Markov chains,” Stoch. Processes Appl., 71, 165–185 (1997).

    Article  MATH  Google Scholar 

  2. 2.

    Chen Mu-Fa, “Explicit bounds of the first eigenvalue,” Science in China, 43, 1051–1059 (2000).

    Article  Google Scholar 

  3. 3.

    P. Coolen-Schrijner and E. van Doorn, “On the convergence to stationarity of birth-death processes,” J. Appl. Probab., 38, 696–706 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Ju.L. Daleckij and M.G. Krein, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, Vol. 43, American Mathematical Society, New York (1974).

  5. 5.

    E. Van Doorn, “Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process,” Adv. Appl. Probab., 17, 514–530 (1985).

    Article  MATH  Google Scholar 

  6. 6.

    E. Van Doorn, “Representations and bounds for zeros of ortogonal polynomials and eigenvalues of signsymmetric tri-diagonal matrices,” J. Approx. Theory, 51, 254–266 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    B. L. Granovsky and A. I. Zeifman, “The decay function of nonhomogeneous birth-death processes, with application to mean-field models,” Stoch. Processes Appl., 72, 105–120 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    B. L. Granovsky and A. I. Zeifman, “The N-limit of spectral gap of a class of birth-death Markov chains,” Appl. Stoch. Models Business Ind., 16, 235–248 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    M. Kijima, “Evaluation of the decay parameter for some specialized birth-death processes,” J. Appl. Probab., 29, 781–792 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    I. Soloviev and A. Zeifman, “The investigation of the traffic intensity for a queueing system. Statistical methods of estimating and hypothesis verification,” Stat. Methods Estim. Testing Hypotheses, 16, 171–177 (2002).

    Google Scholar 

  11. 11.

    A. I. Zeifman, “Qualitative properties of inhomogeneous birth and death processes,” J. Sov. Math., 57, No. 4, 3217–3224 (1991).

    Article  MathSciNet  Google Scholar 

  12. 12.

    A. I. Zeifman, “Some estimates of the rate of convergence for birth and death processes,” J. Appl. Probab., 28, 268–277 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    A. I. Zeifman, “Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes,” Stoch. Processes Appl., 59, 157–173 (1995).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Zeifman.

Additional information

*This research is supported by RFBR grant 06–01–00111.

Proceedings of the XXVI International Seminar on Stability Problems for Stochastic Models, Sovata-Bai, Romania, August 27 – September 2, 2006.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soloviev, I., Zeifman, A.I. On the Maximal Value of Spectral Gap for Some Birth and Death Processes*. J Math Sci 200, 486–491 (2014). https://doi.org/10.1007/s10958-014-1933-9

Download citation

Keywords

  • Death Process
  • Exact Formula
  • Decay Parameter
  • Arrival Intensity
  • Special Transformation