Skip to main content
Log in

Random Determinants, Mixed Volumes of Ellipsoids, and Zeros of Gaussian Random Fields

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Consider a d × d matrix M whose rows are independent, centered, nondegenerate Gaussian vectors ξ 1,…,ξ d with covariance matrices Σ1,…,Σ d . Denote by ε i the dispersion ellipsoid of \( {\xi_{\mathrm{i}}}:{\varepsilon_i}=\left\{ {\mathbf{x}\in {{\mathbb{R}}^d}:{{\mathbf{x}}^{\top }}\sum\nolimits_i^{-1 } {\mathbf{x}\leq 1} } \right\} \). We show that

$$ \mathbb{E}\left| {\det M} \right|=\frac{d! }{{{{{\left( {2\pi } \right)}}^{{{d \left/ {2} \right.}}}}}}{V_d}\left( {{\varepsilon_1}\ldots {\varepsilon_d}} \right), $$

where V d (·,…,·) denotes the mixed volume. We also generalize this result to the case of rectangular matrices. As a direct corollary, we get an analytic expression for the mixed volume of d arbitrary ellipsoids in ℝd.

As another application, we consider a smooth, centered, nondegenerate Gaussian random field X = (X 1,…,X k ) : ℝd → ℝk. Using the Kac-Rice formula, we obtain a geometric interpretation of the intensity of zeros of X in terms of the mixed volume of dispersion ellipsoids of the gradients of \( {{{{X_i}}} \left/ {{\sqrt{{\mathbf{Var}{X_i}}}}} \right.} \). This relates zero sets of equations to mixed volumes in a way which is reminiscent of the well-known Bernstein theorem about the number of solutions of a typical system of algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Azaïs and M. Wschebor, Level Sets and Extrema of Random Processes and Fields, Wiley (2009).

  2. A. Barvinok, “Computing mixed discriminants, mixed volumes, and permanents,” Discrete Comput. Geom., 18, 205–237 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. N. Bernshtein, “The number of roots of a system of equations,” Funct. Anal. Appl., 9, 183–185 (1975).

    Article  Google Scholar 

  4. Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften, Vol. 285, Springer–Verlag, Berlin (1988).

    Google Scholar 

  5. N. R. Goodman, “The distribution of the determinant of a complex Wishart distributed matrix,” Ann. Math. Statist., 34, 178–180 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  6. W. C. Karl, G. C. Verghese, and A. S. Willsky, “Reconstructing ellipsoids from projections,” CVGIP: Graphical Model and Image Processing, 56, 124–139 (1994).

    Google Scholar 

  7. H. Minkowski, “Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs,” in: Gesammelte Abhandlungen, Vol. 2 (1911), pp. 131–229.

  8. R. Schneider and W. Weil, Stochastic and Integral Geometry, Springer–Verlag (2008).

  9. V. N. Sudakov, “Geometric problems in the theory of infinite-dimensional probability distributions,” Trudy Mat. Inst. Akad. Nauk SSSR, 141 (1976).

  10. S. S. Wilks, “Moment-generating operators for determinants of product moments in samples from a normal system,” Ann. Math., 35, 312–340 (1934).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zaporozhets.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 408, 2012, pp. 187–196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaporozhets, D., Kabluchko, Z. Random Determinants, Mixed Volumes of Ellipsoids, and Zeros of Gaussian Random Fields. J Math Sci 199, 168–173 (2014). https://doi.org/10.1007/s10958-014-1844-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1844-9

Keywords

Navigation