Skip to main content

Advertisement

Log in

On Foundation of the Dimensionality Reduction Method for Explanatory Variables

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Study of many complex phenomena involves data sets of high dimension. This is typical for many medical and biological studies, especially in genetics and pharmacology. We treat binary response variable (showing, e.g., the state of patient’s health) depending on n discrete factors (explanatory variables). To find the most significant among them is a very important problem. The aim of the paper is to establish necessary and sufficient conditions for the strong consistency of the specified estimates employing the cross-validation of the error arising in prediction algorithm for the response variable. The impact of the choice of a function is discussed as well. The obtained results provide a basis for the well-known MDR-method widely used in genetic data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bradley-Smith, S. Hope, H. V. Firth, and J. A. Hurst, Oxford Handbook of Genetics, Oxford Univ. Press, New York (2010).

    Google Scholar 

  2. H. Schwender, I. Ruczinski, and K. Ickstadt, “Testing SNPs and sets of SNPs for importance in association studies,” Biostatistics, 12, 18–32 (2011).

    Article  Google Scholar 

  3. M. D. Ritchie, L. W. Hahn, N. Roodi, R. Bailey, W. D. Dupont, F. F. Parl, and J. H. Moore, “Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer,” Amer. J. Human Genetics, 69, 139–147 (2001).

    Article  Google Scholar 

  4. M. D. Ritchie and A. A. Motsinger, “Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies,” Pharmacogenomics, 6, 823–834 (2005).

    Article  Google Scholar 

  5. M. D. Ritchie, L. W. Hahn, and J. H. Moore, “Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetics heterogeneity,” Genetic Epidemiology, 24, 150–157 (2003).

    Article  Google Scholar 

  6. H. Mei, M. L. Cuccaro, and E. R. Martin, “Multifactor dimensionality reduction-phenomics: a novel method to capture genetic heterogeneity with use of phenotypic variables,” Amer. J. Human Genetics, 81, 1251–1261 (2007).

    Article  Google Scholar 

  7. H. He, W. S. Oetting, M. J. Brott, and S. Basu, “Power of multifactor dimensionality reduction and penalized logistic regression for detecting gene-gene interaction in a case-control study,” BMC Medical Genetics, 10 (2009), doi: 10.1186/1471-2350-10-127.

  8. T. Cattaert, V. Urrea, A. C. Naj, L. De Lobel, V. De Wit, M. Fu, J. M. M. John, H. Shen, M. L. Calle, M. D. Ritchie, T. L. Edwards, and K. Van Steen, “FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using individuals,” PLoS ONE, 5(4), e10304 (2010).

    Article  Google Scholar 

  9. T. L. Edwards, E. S. Torstenson, E. M. Martin, and M. D. Ritchie, “A cross-validation procedure for general pedigrees and matched odds ratio fitness metric implemented for the multifactor dimensionality reduction pedigree disequilibrium test MDR-PDT and cross-validation: power studies,” Genetic Epidemiology, 34, 194–199 (2010).

    Article  Google Scholar 

  10. S. Oh, J. Lee, M-S. Kwon, B. Weir, K. Ha, and T. Park, “A novel method to identify high order gene-gene interactions in genome-wide association studies: Gene-based MDR,” BMC Bioinformatics, 13 (Suppl. 9):S5 (2012) http://www.biomedcentral.com/1471-2105/13/S9/S5.

    Article  Google Scholar 

  11. A. Bulinski, O. Butkovsky, V. Sadovnichy, A. Shashkin, P. Yaskov, A. Balastskiy, L. Samokhodskaya, and V. Tkachuk, “Statistical methods of SNP data analysis and applications,” Open J. Statist., 2, 73–87 (2012).

    Article  Google Scholar 

  12. D. Velez, B. White, A. Motsinger, W. Bush, M. Ritchie, S. Williams, and J. Moore. “Balanced accuracy function for epistatis modeling in imbalanced datasets using multifactor dimensionality reduction,” Genetic Epidemiology, 31, 306–315 (2007).

    Article  Google Scholar 

  13. S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Statist. Surv., 4, 40–79 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. L. Taylor and T.-C. Hu, “Strong laws of large number for arrays of row-wise independent random elements,” Int. J. Math. Math. Sci., 10, 805–814 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Golland, F. Liang, S. Mukherjee, and D. Panchenko, “Permutation tests for classification,” Lect. Notes Comp. Sci., 3559, Springer (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bulinski.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 408, 2012, pp. 84–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulinski, A.V. On Foundation of the Dimensionality Reduction Method for Explanatory Variables. J Math Sci 199, 113–122 (2014). https://doi.org/10.1007/s10958-014-1838-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1838-7

Keywords

Navigation