Skip to main content
Log in

On a Diophantine Representation of the Predicate of Provability

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let \( \mathcal{P} \) be the first-order predicate calculus with a single binary predicate letter. Making use of the techniques of Diophantine coding developed in the works on Hilbert’s tenth problem, we construct a polynomial F(t; x1, . . . , xn) with integral rational coefficients such that the Diophantine equation

$$ F\left( {{t_0};{x_1},\ldots,\ {x_n}} \right)=0 $$

is soluble in integers if and only if the formula of \( \mathcal{P} \) numbered t0 in the chosen numbering of the formulas of \( \mathcal{P} \) is provable in \( \mathcal{P} \). As an application of that construction, we describe a class of Diophantine equations that can be proved insoluble only under some additional axioms of the axiomatic set theory, for instance, assuming the existence of an inaccessible cardinal. Bibliography: 14 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Carl, “Formale Mathematik und Diophantische Gleichungen,” Diplomarbeit, Universität Bonn (2007).

    Google Scholar 

  2. M. Davis, “Hilbert’s tenth problem is unsolvable,” Amer. Math. Monthly, 80, 233–269 (1973).

    Article  MathSciNet  Google Scholar 

  3. M. Davis, Yu. Matijasevič, and J. Robinson, “Hilbert’s tenth problem. Diophantine equations: positive aspects of a negative solution,” in: Proc. Symp. Pure Math., 28 (1976), pp. 323–378.

  4. V. H. Dyson, J. P. Jones, and J. C. Shepherdson, “Some Diophantine forms of Gödel’s theorem,” Arch. Math. Logik Grundlagenforsch., 22, No. 1–2, 51–60 (1982).

    MATH  MathSciNet  Google Scholar 

  5. H. M. Friedman, “Finite functions and the necessary use of large cardinals,” Ann. Math., 148, 803–893 (1998).

    Article  MATH  Google Scholar 

  6. K. Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory, Princeton Univ. Press, Princeton (1940).

    Google Scholar 

  7. J. P. Jones, “Universal Diophantine equation,” J. Symbolic Logic, 47, 549–571 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Kalmár, “Zurückführung des Entscheidungsproblems auf den Fall von Formeln mit einer einzigen binären Funktionsvariablen,” Compos. Math., 4, 137–144 (1936).

    Google Scholar 

  9. Yu. I. Manin, “Brouwer memorial lecture,” Nieuw Arch. Wiskd. (4), 6, No. 1–2, 1–6 (1988).

  10. Yu. V. Matiyasevich, “Enumerable sets are Diophantine,” Dokl. Akad. Nauk SSSR, 191, No. 2, 279–282 (1970).

    MathSciNet  Google Scholar 

  11. Yu. V. Matiyasevich, “Diophantine representation of enumerable predicates,” Izv. Akad Nauk SSSR. Ser. Mat., 35, No. 1, 3–30 (1971).

    MATH  MathSciNet  Google Scholar 

  12. Yu. V. Matiyasevich, Hilbert’s Tenth Problem [in Russian], Nauka, Moscow (1993).

    Google Scholar 

  13. Yu. V. Matiyasevich, An e-mail letter to the second author (2005).

  14. E. Mendelson, Introduction to Mathematical Logic, Chapman & Hall/CRM, Boca Raton (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carl.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 407, 2012, pp. 77–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carl, M., Moroz, B.Z. On a Diophantine Representation of the Predicate of Provability. J Math Sci 199, 36–52 (2014). https://doi.org/10.1007/s10958-014-1830-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1830-2

Keywords

Navigation