Skip to main content
Log in

L p -Theory of the Problem of Motion of Two Incompressible Capillary Fluids in a Container

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We prove the L p -estimates for the solution of the problem of motion of two immiscible viscous incompressible capillary fluids in a container. The fluids are subject to the mass forces exponentially decaying as t → ∞. Recently, this problem (with vanishing external forces) was studied in the Hölder spaces of functions. We prove the solvability of the problem with the initial data close to the equilibrium state and analyze the behavior of the solution as t → ∞. We also discuss the case of absence of the surface tension. Bibliography: 42 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Denisova, and V. A. Solonnikov, “Global solvability of the problem on the motion of two incompressible capillary fluids in a container” [in Russian], Zap. Nauchn. Semin. POMI 397, 20–52 (2011); English transl.: J. Math. Sci., New York 185, No. 5, 668–686 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Padula and V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier-Stokes equations” [in Russian], Probl. Mat. Anal. 50, 87–112 (2010); English transl.: J. Math. Sci., New York 170, No. 4, 522–553 (2010).

    Article  MathSciNet  Google Scholar 

  3. V. A. Solonnikov, “L p -estimates for a linear problem arising in the study of the motion of an isolated liquid mass” [in Russian], Probl. Mat. Anal. 69, 137–166 (2013); English transl.: J. Math. Sci., New York 189, No. 4, 699–733 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  4. J. T. Beale, “The initial value problem for the Navier-Stokes equations with a free surface,” Commun. Pure Appl.Math. 34, 359–392 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  5. J. T. Beale, “Large time regularity of viscous surface waves,” Arch. Ration. Mech. Anal. 84, 307–352 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Allain, Small-Time Existence for the Navier–Stokes Equations with a Free Surface, Ecole Polytechnique, Rapp. No. 135, 1–24 (1985).

  7. H. Abels, The Initial Value Problem for the Navier–Stokes Equations with a Free Surface in L q -Sobolev Spaces, Preprint, TU Darmstadt (2003).

    Google Scholar 

  8. V. A. Solonnikov, “Solvability of the problem of evolution of an isolated volume of viscous, incompressible, capillary fluid” [in Russian], Zap. Nauchn. Semin. POMI 140, 179–186 (1984); J. Math. Sci., New York 32, No. 2, 223–2286 (1986).

    Article  MATH  Google Scholar 

  9. V. A.Solonnikov, “On the evolution of an isolated volume of viscous incompressible capillary fluid for large values of time” [in Russian], Vestn. Leningr. Univ., Ser I 3, 49–55 (1987); English transl.: Vestn. Leningr. Univ., Math. 20, No. 3, 52–58 (1987).

    MATH  MathSciNet  Google Scholar 

  10. V. A. Solonnikov, “On a nonstationary motion of an isolated mass of a viscous incompressible fluid” [in Russian], Izv. Akad. Nauk SSSR, Ser. Mat. 51, No. 5, 1065–1087 (1987); English transl.: Math. USSR, Izv. 31, No. 2, 381–405 (1988).

    Article  MathSciNet  Google Scholar 

  11. V. A. Solonnikov, “An initial-boundary value problem for a Stokes system that arises in the study of a problem with a free boundary” [in Russian], Tr. Mat. Inst. Steklova 188, 150–188 (1990); English transl.: Proc. Steklov Inst. Math. 3, 191–239 (1991).

    Google Scholar 

  12. M. Padula and V. A. Solonnikov, “On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation” In: Topics in Mathematical Fluid Mechanics. Meeting on the Occasion of Professor John G. Heywood Sixtieth Birthday, Capo Miseno, Italy, May 27–30, 2000, pp. 185–218, Aracne, Rome (2002).

    Google Scholar 

  13. V. A. Solonnikov, “Lq -estimates for a solution to the problem about the evolution of an isolated amount of a fluid” [in Russian], Probl. Mat. Anal. 26, 255–286 (2003); English transl.: J. Math. Sci., New York 117, No. 3, 4237–4259 (2003).

    Article  MathSciNet  Google Scholar 

  14. V. A. Solonnikov, “On the stability of axially symmetric equilibrium figures of a rotating viscous incompressible fluid” [in Russian], Algebra Anal. 16, No. 2, 120–153 (2004); English transl.: St. Petersbg. Math. J. 16, No. 2, 377–400 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. A. Solonnikov, “On the stability of uniformly rotating viscous incompressible selfgravitating liquid” [in Russian], Zap. Nauchn. Semin. POMI 348, 165–208 (2007); English transl.: J. Math. Sci., New York 152, No. 5, 713–740 (2008).

    Article  MathSciNet  Google Scholar 

  16. I. V. Denisova, “A priori estimates of the solution of a linear evolution problem related to the motion of a drop in a liquid medium” [in Russian], Tr. Mat. Inst. Steklova 188, 3–21 (1990); English transl.: Proc. Steklov Inst. Math. 188, 1–24 (1991).

    Google Scholar 

  17. I. V.Denisova, “Model problem connected to the motion of two incompressible fluids,” Adv. Math. Sci. Appl. 17, No. 1, 195–223 (2007).

    MATH  MathSciNet  Google Scholar 

  18. I. V. Denisova, “Global solvability of a problem on two fluids motion without the surface tension” [in Russian], Zap. Nauchn. Semin. POMI 348, 19–39 (2007); J. Math. Sci., New York 152, No. 5, 626–637 (2008).

    Article  MathSciNet  Google Scholar 

  19. N. Tanaka, “Global existence of two phase non-homogeneous viscous incompressible fluid flow,” Commun. Partial Differ. Equations 18, No 1-2, 41–81 (1993).

    Article  MATH  Google Scholar 

  20. J. Pruess and G. Simonett, “On the two-phase Navier-Stokes equations with surface tension,” Interfaces Free Bound. 12, No. 13, 311–345 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Shibata and S. Shimizu, “On a free boundary problems for the Navier-Stokes equations,” Differ. Integral Equ. 20, No. 3, 241–276 (2007).

    MATH  MathSciNet  Google Scholar 

  22. Y. Shibata and S. Shimizu, “On the maximal LpLq regularity of the Stokes problem with first order boundary condition,” J.Math. Soc. Japan 64 No. 2, 561–626 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Pruess, S. Shimizu, and M. Wilke, Qualitative behavior of incompressible two-phase flows with phase transitions; the case of non-equal densities, arXiv:1304.3302 (2013).

  24. J. Marcinkiewicz, “Sur les multiplicateurs des séries de Fourier,” Studia Math. 8, 78–91 (1939).

    Google Scholar 

  25. S. G. Mikhlin, “On the multipliers of Fourier integrals” [in Russian], Dokl. Akad. Nauk SSSR 109, 701–703 (1956).

    MATH  MathSciNet  Google Scholar 

  26. P. I. Lizorkin, “On the theory of Fourier multipliers” [in Russian], Tr. Mat. Inst. Steklova 173, 149–163 (1986); English transl.: Proc. Steklov Inst. Math. 173, 161–176 (1987).

    MATH  Google Scholar 

  27. L. R. Volevich, “Solvability of boundary value problems for general elliptic systems” [in Russian], Mat. Sb. 68, 373–416 (1965).

    MathSciNet  Google Scholar 

  28. I. Sh. Mogilevskii, “Estimates of solutions of a general initial-boundary value problem for the linear nonstationary system of Navier-Stokes equations in a half-space” [in Russian], Zap. Nauchn. Sem. LOMI 84, 147–173 (1979).

    MathSciNet  Google Scholar 

  29. I. Sh. Mogilevskii, “Solvability of a general boundary value problem for a linearized nonstationary system of Navier-Stokes equations” [in Russian], Zap. Nauchn. Sem. LOMI 110, 105–119 (1981).

    MathSciNet  Google Scholar 

  30. V. A. Solonnikov, “ On problem of stability of equilibrium figures of rotating viscous incompressible self-gravitating liquid” In: Instability in Models Connected with Fluid Flows II, pp. 189–254, Springer, New York (2007).

    Google Scholar 

  31. M. Padula and V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier-Stokes equations” [in Russian], Probl. Mat. Anal. 50, 87–112 (2010); English transl.: J. Math. Sci., New York 170, No. 4, 522–553 (2010).

    Article  MathSciNet  Google Scholar 

  32. V. A. Solonnikov, “Estimates of solutions of nonstationary Navier - Stokes equations” [in Russian], Zap. Nauchn. Semin. LOMI 38, 153–231 (1973).

    MATH  MathSciNet  Google Scholar 

  33. I. V. Denisova and Sh. Nechasova, “ Motion of two incompressible fluids in the Oberbeck-Bousinesq approximation” [in Russian], Zap. Nauchn. Semin. LOMI 362, 92–119 (2008); English transl.: J. Math. Sci., New York 159, No. 4, 436–451 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  34. M. E. Bogovskii, “Solution of some problem of vector analysis related to the operators div and grad” [in Russian], In: Tr. Seminar. S. L. Soboleva, No. 1, pp. 5–40, Novosibirsk (1980).

  35. J. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I: Linearized Steady Problems, Springer, New York (1994).

    Google Scholar 

  36. V. Ja. Rivkind and N. B. Friedman, “On the Navier-Stokes equations with discontinuous coefficients” [in Russian], Zap. Nauchn. Semin. LOMI 38, 137–148 (1973).

    MATH  Google Scholar 

  37. V.A.Solonnikov, “The solvability of the second initial boundary-value problem for the linear, time-dependent system of Navier-Stokes equations” [in Russian], Zap. Nauchn. Semin. LOMI 69, 200–218 (1977); English transl.: J. Math. Sci., New York 10, No. 1, 141–155 (1978).

    Article  Google Scholar 

  38. V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier-Stokes equations [in Russian], Algebra Anal. 22, No. 6, 235–269 (2010); English transl.: St. Petersb. Math. J. 22, No. 6, 1023–1049 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  39. J. T. Beale and T. Nishida, “Large time behavior of viscous surface waves,” Lect. Notes Numer. Appl. Anal. 8, 1–14 (1985).

    MathSciNet  Google Scholar 

  40. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York (1981).

    MATH  Google Scholar 

  41. V. A. Solonnikov, L p -Theory of Free Boundary Problems of Magnetohydrodynamics in Simply Connected Domains, Preprint POMI (2013).

  42. V. A. Solonnikov and E. V. Frolova, “Solvability of a free boundary problem of magnetohydrodynamics on the infinite time interval” [in Russian], Zap. Nauchn. Semin. LOMI 410, 131–167 (2013); English transl.: J. Math. Sci., New York 195, No. 1, 76–97 (2013).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Solonnikov.

Additional information

Translated from Problemy Matematicheskogo Analiza 75, April 2014, pp. 93–152.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solonnikov, V.A. L p -Theory of the Problem of Motion of Two Incompressible Capillary Fluids in a Container. J Math Sci 198, 761–827 (2014). https://doi.org/10.1007/s10958-014-1824-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1824-0

Keywords

Navigation