Skip to main content

An Abelian Group as a Direct Summand of the Multiplication Group

Abstract

In this work, the question of the extraction of an Abelian group as a direct summand in the multiplication group is considered.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. A. Agafonov and A. M. Sebeldin, “Determination of Abelian groups by multiplication group,” in: Proceedings of the All-Russia Symposium “Abelian groups,” Biysk (2010), pp. 13–16.

  2. 2.

    L. Fuchs, Infinite Abelian Groups, V. 1 [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  3. 3.

    L. Fuchs, Infinite Abelian Groups, V. 2 [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  4. 4.

    A. M. Sebeldin, “Homomorphism groups of completely decomposable torsion-free Abelian groups,” Izv. Vyssh. Uchebn. Zaved., Mat., 7, 77–84 (1973).

    MathSciNet  Google Scholar 

  5. 5.

    A. M. Sebeldin, “Isomorphisme naturel des groupes des homomorphismes des groupes abéliens,” Ann. de L’IPGANC, Conakry, sér. A, 8, 155–158 (1982).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Agafonov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 8, pp. 9–12, 2011/12.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agafonov, A.A., Sebeldin, A.M. An Abelian Group as a Direct Summand of the Multiplication Group. J Math Sci 197, 587–589 (2014). https://doi.org/10.1007/s10958-014-1738-x

Download citation

Keywords

  • Abelian Group
  • Direct Product
  • Multiplication Group
  • Russian Translation
  • Direct Summand