Skip to main content
Log in

Local Solarity of Suns in Normed Linear Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The paper is concerned with solarity of intersections of suns with bars (in particular, with closed balls and extreme hyperstrips) in normed linear spaces. A sun in a finite-dimensional (BM)-space (in particular, in 1(n)) is shown to be monotone path connected. A nonempty intersection of an m-connected set (in particular, a sun in a two-dimensional space or in a finite-dimensional (BM)-space) with a bar is shown to be a monotone path-connected sun. Similar results are obtained for boundedly compact subsets of infinite-dimensional spaces. A nonempty intersection of a monotone path-connected subset of a normed space with a bar is shown to be a monotone path-connected α-sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Alimov, “Connectedness of suns in the space c 0,” Izv. Math., 69, No. 4, 651–666 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. R. Alimov, “The geometric structure of Chebyshev sets in (n),” Funct. Anal. Appl., 39, No. 1, 1–8 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space C(Q),” Sb. Math., 197, No. 9, 1259–1272 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. R. Alimov, “Preservation of approximative properties of subsets of Chebyshev sets and suns in (n),” Izv. Math., 70, No. 5, 857–866 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. R. Alimov, “Preservation of approximative properties of Chebyshev sets and suns in a plane,” Moscow Univ. Math. Bull., 63, No. 5, 198–201 (2008).

    Article  MathSciNet  Google Scholar 

  6. A. R. Alimov, “A monotone path connected Chebyshev set is a sun,” Math. Notes, 91, No. 2, 290–292 (2012).

    Article  Google Scholar 

  7. A. R. Alimov, “Bounded strict solarity of strict suns in the space C(Q),” Moscow Univ. Math. Bull. (2012).

  8. A. R. Alimov and V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes,” Fundam. Prikl. Mat., 17, No. 4, 3–12 (2011/2012).

    MathSciNet  Google Scholar 

  9. V. G. Boltyanskii and P. S. Soltan, Combinatorial Geometry and Convexity Classes [in Russian], Shtiintsa, Kishinev (1978).

    Google Scholar 

  10. B. Brosowski and F. Deutsch, “On some geometric properties of suns,” J. Approx. Theory, 10, No. 3, 245–267 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Brosowski, F. Deutsch, J. Lambert, and P. D. Morris, “Chebyshev sets which are not suns,” Math. Ann., 212, No. 1, 89–101 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. L. Brown, “Suns in normed linear spaces which are finite dimensional,” Math. Ann., 279, 87–101 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces,” Proc. Cent. Math. Anal. Aust. Natl. Univ., 20, 1–15 (1988).

    Google Scholar 

  14. A. L. Brown, “Suns in polyhedral spaces,” in: D. G. Álvarez, G. Lopez Acedo, and R. V. Caro, eds., Seminar of Math. Analysis. Univ. Malaga and Seville (Spain), Sept. 2002—Feb. 2003. Proceedings, Univ. Sevilla, Sevilla (2003), pp. 139–146.

    Google Scholar 

  15. E. Dancer and B. Sims, “Weak star separability,” Bull. Aust. Math. Soc., 20, No. 2, 253–257 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Franchetti and S. Roversi, Suns, M-connected sets and P-acyclic sets in Banach spaces, Preprint No. 50139, Inst. di Matematica Applicata G. Sansone (1988).

  17. J. R. Giles, “The Mazur intersection problem,” J. Convex Anal., 13, No. 3–4, 739–750 (2006).

    MATH  MathSciNet  Google Scholar 

  18. J. R. Giles, D. A. Gregory, and B. Sims, “Characterisation of normed linear spaces with Mazur’s intersection property,” Bull. Aust. Math. Soc., 18, 105–123 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. S. Granero, M. Jiménez-Sevilla, and J. P. Moreno, “Intersections of closed balls and geometry of Banach spaces,” Extracta Math., 19, No. 1, 55–92 (2004).

    MATH  MathSciNet  Google Scholar 

  20. V. A. Koshcheev, “Connectedness and solar properties of sets in normed linear spaces,” Math. Notes, 19, No. 2, 158–164 (1976).

    Article  MATH  Google Scholar 

  21. J. P. Moreno and R. Schneider, “Continuity properties of the ball hull mapping,” Nonlinear Anal., 66, 914–925 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  22. R. R. Phelps, “A representation theorem for bounded convex sets,” Proc. Amer. Math. Soc., 11, 976–983 (1960).

    Article  MathSciNet  Google Scholar 

  23. I. G. Tsar’kov, “Bounded Chebyshev sets in finite-dimensional Banach spaces,” Math. Notes, 36, No. 1, 530–537 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  24. A. A. Vasil’eva, “Closed spans in vector-valued function spaces and their approximative properties,” Izv. Math., 68, No. 4, 709–747 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  25. L. P. Vlasov, “Approximative properties of sets in normed linear spaces,” Russ. Math. Surv., 28, No. 6, 1–66 (1973).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Alimov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 7, pp. 3–14, 2011/12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alimov, A.R. Local Solarity of Suns in Normed Linear Spaces. J Math Sci 197, 447–454 (2014). https://doi.org/10.1007/s10958-014-1726-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1726-1

Keywords

Navigation