Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Journal of Mathematical Sciences
  3. Article
On the Ergodicity of some Continuous-Time Markov Processes*
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On Weak and Strong Ergodicity

14 February 2019

Juan Alberto Rojas Cruz & Iesus C. Diniz

Marked point processes in discrete time

16 April 2019

Karl Sigman & Ward Whitt

Variational Principles for Asymptotic Variance of General Markov Processes

15 September 2022

Lu Jing Huang, Yong Hua Mao & Tao Wang

Correction to a proposition related to ergodicity of Markov chains

05 June 2021

Ziqi Tan & Xianping Guo

Stationary Distribution of a Stochastic Process

27 April 2018

V. I. Lotov & E. M. Okhapkina

A Generalization of the Submartingale Property: Maximal Inequality and Applications to Various Stochastic Processes

19 January 2019

János Engländer

On the Distribution of the First Component ηt of a Controlled Poisson Process {ηt, ξt}, t ≥ 0, without Boundary

01 November 2018

T. M. Aliev & K. K. Omarova

Estimation of stationary probability of semi-Markov Chains

30 September 2021

Nikolaos Limnios & Bei Wu

A Local Large Deviation Principle for Inhomogeneous Birth–Death Processes

01 July 2018

N. D. Vvedenskaya, A. V. Logachov, … A. A. Yambartsev

Download PDF
  • Published: 21 December 2013

On the Ergodicity of some Continuous-Time Markov Processes*

  • M. A. Elesin1,
  • A. V. Kuznetsov1 &
  • A. I. Zeifman1,2,3 

Journal of Mathematical Sciences volume 196, pages 43–49 (2014)Cite this article

  • 78 Accesses

  • Metrics details

Conditions of the ergodicity of some continuous-time Markov processes close to birth-and-death processes with proportional intensities are studied.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. B. Andreev, M.A. Elesin, E. A. Krylov, A.V. Kuznetsov, and A. I. Zeifman, “On ergodicity and stability estimates for some nonhomogeneous Markov chains,” J. Math. Sci., 112, 4111–4118 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. D. B. Andreev, M.A. Elesin, E. A. Krylov, A.V. Kuznetsov, and A. I. Zeifman, “Ergodicity and stability of non-stationary queuing systems,” Probab. Theory Math. Stat., 68, 1–11 (2003).

    Article  MATH  Google Scholar 

  3. Ju. L. Dalec’kii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, American Mathematical Society, Providence (1974).

  4. E. van Doorn, “Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process,” Adv. Appl. Probab., 17, 504–530 (1985).

    Article  Google Scholar 

  5. B. V. Gnedenko and I. P. Makarov, “The properties of solutions to the problems with losses in the case of periodic intensities,” Differ. Equ., 7, 1696–1698 (1971).

    MATH  MathSciNet  Google Scholar 

  6. B. V. Gnedenko and A. D. Soloviev, “On conditions of existence of the final probabilities of a Markov process,” Math. Oper. Stat., 4, 379–390 (1973).

    MATH  Google Scholar 

  7. D. B. Gnedenko, “On a generalization of the Erlang formula,” Zastosow. Mat., 12, 239–242 (1971).

    MATH  MathSciNet  Google Scholar 

  8. V. Giorno and A. Nobile, “On some time-nonhomogeneous diffusion approximations to queueing systems,” Adv. Appl. Probab., 19, 974–994 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  9. B. L. Granovsky and A. I. Zeifman, “Nonstationary Markovian queues,” J. Math. Sci., 99, No. 4, 1415–1438 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Green, P. Kolesar, and A. Svornos, “Some effects of nonstationarity on multiserver Markovian queueing systems,” Oper. Res., 39, 502–511 (1991).

    Article  MATH  Google Scholar 

  11. D. P. Heyman and W. Whitt, “The asymptotic behaviour of queues with time-varying arrival rates,” J. Appl. Probab., 21, 143–156 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Yu. Mitrophanov, “Stability and exponential convergence of continuous-time Markov chains,” J. Appl. Probab., 40, 970–979 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. H. Rothkopf and S. S. Oren, “A closure approximation for the nonstationary M/M/s queue,” Managm. Sci., 25, 522–534 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. I. Zeifman, “Stability for continuous-time nonhomogeneous Markov chains,” in: Stability Problems for Stochastic Models, Lect. Notes Math., Vol. 1155, Springer–Verlag, Berlin, (1985), pp. 401–414.

  15. A. I. Zeifman, “Qualitive properties of non-homogeneous birth-and-death processes,” in: Stability Problems for Stochastic Models [in Russian], VNIISI, Moscow, (1988) pp. 32–40.

  16. A. I. Zeifman, “On the ergodicity of non-homogeneous birth-and-death processes,” in: Stability Problems for Stochastic Models [in Russian], VNIISI, Moscow (1991), pp. 63–70.

  17. A. I. Zeifman, “Some estimates of the rate of convergence for birth and death processes,” J. Appl. Probab., 28, 268–277 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. I. Zeifman, “Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes,” Stoch. Process. Appl., 59, 157–173 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. I. Zeifman, “Stability of birth and death processes,” J. Math. Sci., 91, 3023–3031 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. I. Zeifman and D. Isaacson, “On strong ergodicity for nonhomogeneous continuous-time Markov chains,” Stoch. Process. Appl., 50, 263–273 (1994).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Vologda State Pedagogical University, Vologda Oblast, Russia

    M. A. Elesin, A. V. Kuznetsov & A. I. Zeifman

  2. Institute of Informatics Problems of RAS, Moscow, Russia

    A. I. Zeifman

  3. Institute of Socio-Economic Development of Territories of RAS, Vologda Oblast, Russia

    A. I. Zeifman

Authors
  1. M. A. Elesin
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. V. Kuznetsov
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. A. I. Zeifman
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to M. A. Elesin.

Additional information

*Research supported by the Russian Foundation for Basic Research, project No. 01–01–00644.

Proceedings of the XXVI International Seminar on Stability Problems for Stochastic Models, Sovata-Bai, Romania, August 27 – September 2, 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elesin, M.A., Kuznetsov, A.V. & Zeifman, A.I. On the Ergodicity of some Continuous-Time Markov Processes*. J Math Sci 196, 43–49 (2014). https://doi.org/10.1007/s10958-013-1633-x

Download citation

  • Published: 21 December 2013

  • Issue Date: January 2014

  • DOI: https://doi.org/10.1007/s10958-013-1633-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Markov Chain
  • Intensity Matrix
  • Proportional Intensity
  • Logarithmic Norm
  • Vologda Oblast
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.232.62.64

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.