Skip to main content

Symmetric orthogonal wavelets with dilation factor M = 3

For any given 3-orthogonal symmetric refinable mask, we describe all 3-orthogonal symmetric wavelet masks such that the corresponding wavelet system forms an orthonormal basis in \( {L_2}\left( \mathbb{R} \right) \). Bibliography: 11 titles.

References

  1. I. Daubechies, Ten Lectures on Wavelets, SIAM (1992).

  2. I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet theory, Amer. Math. Soc. (2011).

  3. M. K. Tchobanou, “3-channel symmetric orthogonal wavelet and filter banks,” in: Proc. Int. Conf. DSPA-2011, XII-I-1 (2011), pp. 290–293.

  4. C. Chui and J. Lian, “Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3,” Appl. Comput. Harmon. Anal., 2, 21–51 (1995).

    MathSciNet  Article  MATH  Google Scholar 

  5. B. Han, “Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets,” J. Fourier Anal. Appl., 15, 684–705 (2009).

    MathSciNet  Article  MATH  Google Scholar 

  6. B. Han, “Symmetric orthogonal filters and wavelets with linear-phase moments,” J. Comp. Appl. Math., 236, 482–503 (2011).

    Article  MATH  Google Scholar 

  7. B. Han and X. S. Zhuang, “Matrix extension with symmetry and its application to symmetric orthonormal multiwavelets,” SIAM J. Math. Anal., 42, 2297–2317 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  8. A. Krivoshein, “On construction of multivariate symmetric MRA-based wavelets,” arXiv:1201.2606v1.

  9. W. Lawton, S. L. Lee, and Z. Shen, “An algorithm for matrix extension and wavelet construction,” Math. Comput., 65, 723–737 (1996).

    MathSciNet  Article  MATH  Google Scholar 

  10. A. Petukhov, “Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor,” Appl. Comput. Harmon. Anal., 17, 198–210 (2004).

    MathSciNet  Article  MATH  Google Scholar 

  11. A. Ron and Z. Shen, “Affine systems in L 2(R d): the analysis of the analysis operator,” J. Func. Anal., 148, 408–447 (1997).

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krivoshein.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 401, 2012, pp. 122–143.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krivoshein, A.V., Ogneva, M.A. Symmetric orthogonal wavelets with dilation factor M = 3. J Math Sci 194, 667–677 (2013). https://doi.org/10.1007/s10958-013-1556-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1556-6

Keywords

  • Orthonormal Basis
  • Orthogonal Wavelet
  • Wavelet System
  • Dilation Factor
  • Symmetric Wavelet