Skip to main content

The length function and matrix algebras

Abstract

By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field we mean the least positive integer k such that words of length not exceeding k span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, we study the main ring-theoretical properties of the length function: the behavior of the length under unity adjunction, direct sum of algebras, passage to subalgebras and homomorphic images. We give an upper bound for the length of the algebra as a function of the nilpotency index of its Jacobson radical and the length of the quotient algebra. We also provide examples of length computation for certain algebras, in particular, for the following classical matrix subalgebras: the algebra of upper triangular matrices, the algebra of diagonal matrices, the Schur algebra, Courter’s algebra, and for the classes of local and commutative algebras.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yu. A. Al’pin and Kh. D. Ikramov, “Reducibility theorems for pairs of matrices as rational criteria,” Linear Algebra Appl., 313, 155–161 (2000).

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Yu. A. Al’pin and Kh. D. Ikramov, “On the unitary similarity of matrix families,” Math. Notes, 74, No. 6, 772–782 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    W. C. Brown and F. W. Call, “Maximal commutative subalgebras of n × n matrices,” Commun. Algebra, 21, No. 12, 4439–4460 (1993).

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    D. Constantine and M. Darnall, “Lengths of finite dimensional representations of PWB algebras,” Linear Algebra Appl., 395, 175–181 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    R. C. Courter, “The dimension of maximal commutative subalgebras of K n ,” Duke Math. J., 32, 225–232 (1965).

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    M. Gerstenhaber, “On dominance and varieties of commuting matrices,” Ann. Math., 73, No. 2, 324–348 (1961).

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    A. E. Guterman and O. V. Markova, “Commutative matrix subalgebras and length function,” Linear Algebra Appl., 430, 1790–1805 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge (1985).

    MATH  Book  Google Scholar 

  9. 9.

    R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge (1991).

    MATH  Book  Google Scholar 

  10. 10.

    N. Jacobson, “Schur’s theorems on commutative matrices,” Bull. Am. Math. Soc., 50, 431–436 (1944).

    MATH  Article  Google Scholar 

  11. 11.

    T. J. Laffey, “The minimal dimension of maximal commutative subalgebras of full matrix algebras,” Linear Algebra Appl., 71, 199–212 (1985).

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    T. J. Laffey, “Simultaneous reduction of sets of matrices under similarity,” Linear Algebra Appl., 84, 123–138 (1986).

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    T. J. Laffey and S. Lazarus, “Two-generated commutative matrix subalgebras,” Linear Algebra Appl., 147, 249–273 (1991).

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham (1966).

    MATH  Google Scholar 

  15. 15.

    R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading (1983).

    MATH  Google Scholar 

  16. 16.

    W. E. Longstaff, “Burnside’s theorem: irreducible pairs of transformations,” Linear Algebra Appl., 382, 247–269 (2004).

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    W. E. Longstaff and P. Rosenthal, “On the lengths of irreducible pairs of complex matrices,” Proc. Am. Math. Soc., 139, No. 11, 3769–3777 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    A. I. Mal’cev, Basics of Linear Algebra [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  19. 19.

    O. V. Markova, “On the length of the algebra of upper-triangular matrices,” Russ. Math. Surv., 60, No. 5, 984–985 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    O. V. Markova, “Length computation of matrix subalgebras of special type,” J. Math. Sci., 155, No. 6, 908–931 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    O. V. Markova, “Characterization of commutative matrix subalgebras of maximal length over an arbitrary field,” Moscow Univ. Math. Bull., 64, No. 5, 214–215 (2009).

    MathSciNet  Article  Google Scholar 

  22. 22.

    O. V. Markova, “Upper bound for the length of commutative algebras,” Sb. Math., 200, No. 12, 1767–1787 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    O. V. Markova, “Matrix algebras and their length,” in: Matrix Methods: Theory, Algorithms, Applications, World Sci. Publ. (2010), pp. 116–139.

  24. 24.

    O. V. Markova, “On some properties of the length function,” Math. Notes, 87, No. 1, 71–78 (2010).

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra,” J. Algebra, 197, 535–545 (1997).

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables,” Linear and Multilinear Algebra, 15, 161–170 (1984).

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Pham Viet Hung, “An upper bound for the dimension of commutative nilpotent subalgebras of a matrix algebra,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, 3, 110–111 (1987).

    Google Scholar 

  28. 28.

    R. S. Pierce, Associative Algebras, Springer, New York (1982).

    MATH  Book  Google Scholar 

  29. 29.

    H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Springer, New York (2000).

    MATH  Book  Google Scholar 

  30. 30.

    I. Schur, “Zur Theorie der vertauschbären Matrizen,” J. Reine Angew. Math., 130, 66–76 (1905).

    Google Scholar 

  31. 31.

    Y. Song, “A construction of maximal commutative subalgebra of matrix algebras,” J. Korean Math. Soc., 40, No. 2, 241–250 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    A. J. M. Spencer and R. S. Rivlin, “The theory of matrix polynomials and its applications to the mechanics of isotropic continua,” Arch. Ration. Mech. Anal., 2, 309–336 (1959).

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    A. J. M. Spencer and R. S. Rivlin, “Further results in the theory of matrix polynomials,” Arch. Ration. Mech. Anal., 4, 214–230 (1960).

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, New York (1968); 2nd edition, URSS, Moscow (2003).

  35. 35.

    V. V. Voevodin and E. E. Tyrtyshnikov, Numerical Processes with Toeplitz Matrices [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  36. 36.

    A. Wadsworth, “The algebra generated by two commuting matrices,” Linear and Multilinear Algebra, 27, 159–162 (1990).

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. V. Markova.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 6, pp. 65–173, 2011/12.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Markova, O.V. The length function and matrix algebras. J Math Sci 193, 687–768 (2013). https://doi.org/10.1007/s10958-013-1495-2

Download citation

Keywords

  • Length Function
  • Minimal Polynomial
  • Jacobson Radical
  • Unitary Algebra
  • Commutative Subalgebra