Skip to main content

Optimization problems under (max, min)-linear equations and/or inequality constraints


The paper is a survey of recent results concerning optimization problems whose set of feasible solutions is described by a finite system of so-called (max, min)-linear equations and/or inequalities. The objective function is equal to the maximum of a finite number of continuous unimodal functions f j : R → R each depending on one variable x j R = (−∞,+). Motivation problems from the area of operations research, illustrative numerical examples, and hints for further research are included.

This is a preview of subscription content, access via your institution.


  1. 1.

    F. L. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization and Linearity. An Algebra for Discrete Event Systems, Wiley, Chichester (1992).

    MATH  Google Scholar 

  2. 2.

    P. Butkovič, Max-Linear Systems: Theory and Algorithms, Springer Monographs Math., Springer, London (2010).

    Book  Google Scholar 

  3. 3.

    P. Butkovič and G. Hegedüs, “An elimination method for finding all solutions of the system of linear equations over an extremal algebra,” Ekonomicko-matematický obzor, 20, 203–215 (1984).

    Google Scholar 

  4. 4.

    P. Butkovič and K. Zimmermann, “A strongly polynomial algorithm for solving two-sided linear systems in max-algebra,” Discrete Appl. Math., 154, 437–446 (2006).

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    K. Cechlárová, “Efficient computation of the greatest eigenvector in fuzzy algebra,” Tatra Mt. Math. Publ., 12, 73–79 (1997).

    MathSciNet  Google Scholar 

  6. 6.

    R. A. Cuninghame-Green, Minimax Algebra, Lect. Notes Economics Math. Systems, Vol. 166, Springer, Berlin (1979).

  7. 7.

    R. A. Cuninghame-Green and K. Zimmermann, “Equation with residual functions,” Comment. Math. Univ. Carolin., 42, 729–740 (2001).

    MathSciNet  MATH  Google Scholar 

  8. 8.

    M. Gavalec and K. Zimmermann, “Solving systems of two-sided (max, min)-linear equations,” Kybernetika, 46, 405–414 (2010).

    MathSciNet  MATH  Google Scholar 

  9. 9.

    M. Gavalec and K. Zimmermann, “Optimization problems with two-sided systems of linear equations over distributive lattices,” in: Proc. Conf. Mathematical Methods in Economics (2010), pp. 172–176.

  10. 10.

    G. L. Litvinov, V. P. Maslov, and S. N. Sergeev, eds., Idempotent and Tropical Mathematics and Problems of Mathematical Physics, Vol. 1, Nezavis. Univ., Moscow (2007).

  11. 11.

    V. P. Maslov and S. N. Samborskij, Idempotent Analysis, Adv. Soviet Math., Vol. 13, Amer. Math. Soc., Providence (1992).

  12. 12.

    E. Sanchez, “Resolution of eigen fuzzy sets equations,” Fuzzy Sets Syst., 1, No. 1, 69–74 (1978).

    MATH  Article  Google Scholar 

  13. 13.

    E. Sanchez, “Inverses of fuzzy relations. Applications to possibility distributions and medical diagnosis,” Fuzzy Sets Syst., 2, 77–86 (1979).

    Article  Google Scholar 

  14. 14.

    N. N. Vorobjov, “Extremal algebra of positive matrices,” Datenverarbeitung Kybernetik, 3, 39–71 (1967).

    Google Scholar 

  15. 15.

    K. Zimmermann, Disjunctive optimization problems, max-separable problems and extremal algebras, Theor. Comput. Sci., 293, 45–54 (2003).

    MATH  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Martin Gavalec.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 6, pp. 3–21, 2011/12.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gavalec, M., Gad, M. & Zimmermann, K. Optimization problems under (max, min)-linear equations and/or inequality constraints. J Math Sci 193, 645–658 (2013).

Download citation


  • Feasible Solution
  • Preceding Section
  • Inequality Constraint
  • Maximal Element
  • Linear Inequality