M. Aissen, I. J. Schoenberg, and A. M. Whitney, “On the generating function of totally positive sequences. I,” J. Anal. Math., 2, 93–103 (1952).
MathSciNet
MATH
Article
Google Scholar
Á. Baricz and M. E. H. Ismail, “Turán type inequalities for Tricomi confluent hypergeometric functions,” Constr. Appr. (2012), doi:10.1007/s00365-012-9171-1.
R. W. Barnard, M. Gordy, and K. C. Richards, “A note on Turán type and mean inequalities for the Kummer function,” J. Math. Anal. Appl., 349, 259–263 (2009); doi:10.1016/j.jmaa.2008.08.024.
MathSciNet
MATH
Article
Google Scholar
P. Brändén, “Iterated sequences and the geometry of zeros,” J. reine angew. Math., 658, 11–136 (2011).
Google Scholar
L. Grabarek, “A new class of nonlinear stability preserving operators,” Complex Variables Ellipt. Eqs. Int. J., 1–12 (2011); doi:10.1080/17476933.2011.586696.
M. E. H. Ismail and A. Laforgia, “Monotonicity properties of determinants of special functions,” Constr. Appr., 26, 1–9 (2007).
MathSciNet
MATH
Article
Google Scholar
R. Yoshida, “On some questions of Fisk and Brändén,” Complex Variables Ellipt. Eqs. Int. J., 1–13 (2011); doi:10.1080/17476933.2011.603418.
S. Karlin, Total Positivity, Vol. I. Stanford Univ. Press, Stanford, California (1968).
MATH
Google Scholar
D. B. Karp and S. M. Sitnik, “Log-convexity and log-concavity of hypergeometric-like functions,” J. Math. Anal. Appl., 364, 384–394 (2010).
MathSciNet
MATH
Article
Google Scholar
D. Karp, “Log-convexity and log-concavity of hypergeometric-like functions,” in: International Conference “Computational Methods and Function Theory”, Bilkent Univ., Ankara, Turkey, June 8–12 (2009); Abstracts, p. 36.
Amer. Inst. Math., Problem Lists, Stability and Hyperbolicity, http://aimpl.org/hyperbolicpoly/3.
O. M. Katkova and A. M. Vishnyakova, “On sufficient conditions for the total positivity and for the multiple positivity of matrices,” Linear Algebra Appl., 416, 1083–1097 (2006).
MathSciNet
MATH
Article
Google Scholar
A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications. Second edition, Springer (2011).
I. V. Ostrovskii and N. A. Zheltukhina, “Parametric representation of a class of multiply positive sequences,” Complex Variables, 37, 457–469 (1998).
MathSciNet
MATH
Article
Google Scholar
I. J. Schoenberg, “On the zeros of the generating functions of multiply positive sequences and functions,” Ann. Math. (2), 62, 447–471 (1955).
MathSciNet
MATH
Article
Google Scholar
M. Tyaglov, Generalized Hurwitz Polynomials (2010); arXiv:1005.3032v1.