Skip to main content

On an estimate in the class of typically real functions

Let T(c2, c 3) be the class of functions \( f(z)=z+\sum\limits_{n=2}^{\infty } {{c_n}{z^n}} \) regular and typically real in the disk |z| < 1 with fixed values of the coefficients c 2 and c 3. The boundary functions of the region of values of f (z 0) (0 < |z0| < 1) and sharp estimates for f (r), 0 < r < 1, in the class T(c 2, c 3) are determined. Bibliography: 6 titles.

References

  1. J. A. Jenkins, “Some problems for typically malfunctions,” Canad. J. Math., 13, 427–431 (1961).

    MathSciNet  Article  Google Scholar 

  2. E. G. Goluzina., “On the regions of values of some systems of functionals in the class of typically real functions,” Vestn. Leningr. Gos. Univ., Ser. Mat., Mekh., Astr., Vyp. 2, No. 7, 45–62 (1965).

  3. M. S. Robertson, “On the cofficients of typically real functions,” Bull Amer. Math. Soc., 41, No. 8, 565–572 (1935).

    MathSciNet  Article  Google Scholar 

  4. G. M. Goluzin, “On typically real functions,” Mat. Sb., 27 (69), No. 2, 201–218 (1950).

  5. M. G. Krein and A. A. Nudelman, Markov’s Moment Problem and Extremal Problems [in Russian], Moscow (1973).

  6. F. R. Gantmakher, The Theory of Matrices, 5th ed. [in Russian], Moscow (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Goluzina.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 404, 2012, pp. 75–82.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goluzina, E.G. On an estimate in the class of typically real functions. J Math Sci 193, 40–44 (2013). https://doi.org/10.1007/s10958-013-1431-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1431-5

Keywords

  • Real Function
  • Boundary Function
  • Sharp Estimate