Skip to main content
Log in

Viscoplastic dynamics of metallic composite shells of layered-fibrous structure under the action of loads of explosive type. I. Statement of the problem and method for solution

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We formulate the problem of viscoplastic dynamic deformation of metallic composite shells of layered-fibrous structure. We have developed an original numerical method for the integration of the posed initial boundary-value problem based on the successive discretization of the domain of definition of the solution first with respect to time and then with respect to space variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Abrosimov and V. G. Bazhenov, Nonlinear Problems of Dynamics of Composite Structures [in Russian], Nizhny Novgorod State University, Nizhny Novgorod (2002).

    Google Scholar 

  2. L. Ya. Ainola and U. K. Nigul, “Wave processes of deformation of elastic plates and shells,” Izv. Akad. Nauk Eston. SSR, Ser. Fiz.-Mat. Tekhn. Nauk, 14, No. 1, 3–63 (1965).

    MathSciNet  Google Scholar 

  3. A. N. Andreev and Yu. V. Nemirovskii, Multilayered Anisotropic Shells and Plates. Bending, Stability, and Vibrations [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  4. V. G. Bazhenov, V. K. Lomunov, and S. L. Osetrov, “Analysis of the applicability of a rigid-plastic model in problems of static and dynamic bending of plates,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser. Mekh. Predel’n. Sostoyan., No. 2 (8), 64–70 (2010).

  5. V. G. Bazhenov, V. K. Lomunov, M. V. Petrov, and A. G. Ugodchikov, “Investigation of large viscoplastic strains of cylindrical shells using the magnetic-pulse method of loading,” Mashinovedenie, No. 5, 73–80 (1983).

  6. V. Z. Vlasov and N. N. Leont’ev, Beams, Plates, and Shells on an Elastic Base [in Russian], Fizmatlit, Moscow (1960).

    Google Scholar 

  7. H. Hopkins and W. Prager, On the dynamics of plastic circular plates,” Z. Angew. Math. Mekh., 5, No. 4, 317–330 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Dzhuraev, Systems of Equations of Composite Type [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  9. M. I. Erkhov, Theory of Ideally Plastic Bodies and Structures [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  10. V. G. Zubchaninov, Mechanics of Processes of Plastic Media [in Russian], Fizmatlit, Moscow (2010).

    Google Scholar 

  11. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  12. T. D. Karimbaev, B. M. Myktybekov, and I. M. Panova, “Mathematical models of nonlinear deformation of unidirectionally reinforced composite materials,” Trudy Tsentr. Instit. Aviats. Motorostroen., No. 1334, TIAM, Moscow (2005).

  13. V. V. Karpov, Strength and Stability of Stiffened Shells of Revolution, Vol. 1: Models and Algorithms of the Investigation of the Strength and Stability of Stiffened Shells of Revolution [in Russian], Fizmatlit, Moscow (2010).

    Google Scholar 

  14. L. M. Kachanov, Fundamentals of the Theory of Plasticity [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  15. L. M. Kachanov, Theory of Creep [in Russian], Fizmatlit, Moscow (1960).

    Google Scholar 

  16. A. G. Kobelev, V. I. Lysak, V. N. Chernyshev, A. A. Bykov, and V. P. Vostrikov, Production of Metallic Layered Composite Materials [in Russian], Intermet Inzhiniring, Moscow (2002).

    Google Scholar 

  17. K. L. Komarov and Yu. V. Nemirovskii, Dynamics of Rigid-Plastic Structural Elements [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  18. S. G. Mikhlin, Numerical Realization of Variational Methods [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  19. Kh. M. Mushtari, Nonlinear Theory of Shells [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  20. Yu. V. Nemirovskii, “On the elastoplastic behavior of a reinforced layer,” Prikl. Mekh. Tekhn. Fiz., No. 6, 81–89 (1969).

  21. Yu. V. Nemirovskii and A. P. Yankovskii, “Viscoplastic dynamics of layered-fibrous plates of variable thickness under the action of explosion-type loads,” Mekh. Kompoz. Mater. Konstruk., 12, No. 4, 484–501 (2006).

    MathSciNet  Google Scholar 

  22. Yu. V. Nemirovskii and A. P. Yankovskii, “Dynamic viscoplastic bending of reinforced bars of variable cross-section,” Mat. Met. Fiz.-Mekh. Polya, 49, No. 1, 53–66 (2006).

    MathSciNet  Google Scholar 

  23. Yu. V. Nemirovskii and A. P. Yankovskii, “Integration of the problem of dynamic viscoplastic deformation of isotropic cylindrical shells of revolution by a generalized Runge–Kutta method,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser. Mekh. Predel’n. Sostoyan., No. 2 (5), 129–144 (2008).

  24. Yu. V. Nemirovskii and A. P. Yankovskii, “Integration of the problem of dynamic elastoplastic bending of reinforced bars of varying cross-section by generalized Runge–Kutta methods,” Vychisl. Tekhnol., 9, No. 4, 77–95 (2004).

    MathSciNet  Google Scholar 

  25. Yu. V. Nemirovskii and A. P. Yankovskii, “On some features of equations of shells reinforced by fibers of constant cross-section,” Mekh. Kompoz. Mater. Konstruk., 3, No. 2, 20–40 (1977).

    Google Scholar 

  26. Yu. V. Nemirovskii and A. P. Yankovskii, “Viscoplastic deformation of reinforced plates with varying thickness under explosive loads,” Prikl. Mekh., 44, No. 2, 85–98 (2008); English translation: Int. Appl. Mech., 44, No. 2, 188–199 (2008).

    Article  Google Scholar 

  27. Yu. V. Nemirovskii and A. P. Yankovskii, “Steady-state creep of layered metallic composite plates with complex reinforcement structures in longitudinal-transverse bending,” Mekh. Kompoz. Mater. Konstruk., 15, No. 1, 59–82 (2009).

    Google Scholar 

  28. Yu. V. Nemirovskii and A. P. Yankovskii, “Numerical integration of initial boundary-value problems with large gradients of the solution by generalized Runge–Kutta methods,” Mat. Met. Fiz.-Mekh. Polya, 47, No. 1, 43–62 (2004).

    MathSciNet  Google Scholar 

  29. V. V. Pikul’, Mechanics of Shells [in Russian], Dal’nauka, Vladivostok (2009).

    Google Scholar 

  30. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Fizmatgiz, Moscow (1966).

    Google Scholar 

  31. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  32. Yu. P. Trykov, L. M. Gurevich, and V. G. Shmorgun, Layered Composites Based on Aluminum and Aluminum Alloys [in Russian], Metallurgizdat, Moscow (2004).

    Google Scholar 

  33. A. P. Yankovskii, “Steady-state creep of layered metallic composite shells with complex reinforcement structures,” Mekh. Kompoz. Mater. Konstruk., 16, No. 3, 400–420 (2010).

    Google Scholar 

  34. A. P. Yankovskii, “Numerical integration of the problem of viscoplastic dynamics of layered-fibrous rectilinear elongated plates,” in: V. M. Fomin (editor), Numerical Methods of the Solution of Problems of the Theory of Elasticity and Plasticity. Proceedings of the 19th All-Russian Conference (August 28–31, 2005, Biisk) [in Russian], Parallel,’ Novosibirsk (2005), pp. 290–297.

    Google Scholar 

  35. K.-J. Bathe, Finite Element Procedures, Prentice Hall, New Jersey (1996).

    Google Scholar 

  36. K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam (1984).

    MATH  Google Scholar 

  37. O. C. Zeinkiewicz and R. L. Taylor, The Finite Element Method, Butterworth-Heinemann, Oxford (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 55, No. 2, pp. 119–130, April–June, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yankovskii, A.P. Viscoplastic dynamics of metallic composite shells of layered-fibrous structure under the action of loads of explosive type. I. Statement of the problem and method for solution. J Math Sci 192, 623–633 (2013). https://doi.org/10.1007/s10958-013-1421-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1421-7

Keywords

Navigation