Skip to main content
Log in

Weighted enumerations of boxed plane partitions and the inhomogeneous five-vertex model

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider the five-vertex model on a square lattice with fixed boundary conditions which corresponds to weighted (with weight q per elementary cube) enumerations of boxed plane partitions. We calculate the one-point correlation function of the model which describes the probability of a given state on an edge (polarization). This generalizes an analogous result obtained previously by the authors for unweighted (weighted with weight q = 1) enumerations of plane partitions. Bibliography: 14 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Andrews, The Theory of Partitions, Addison-Wesley Publ. (1976).

  2. D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  3. H. Cohn, M. Larsen, and J. Propp, “The shape of a typical boxed plane partition,” New York J. Math., 4, 137–165 (1998).

    MathSciNet  MATH  Google Scholar 

  4. A. Borodin, V. Gorin, and E. M. Rains, “q-Distributions on boxed plane partitions,” Selecta Math. (N. S.), 16, 731–789 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model,” J. Phys. A, 38, 9415–9430 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. M. Bogoliubov, “Four-vertex model and random tilings,” Teor. Mat. Fiz., 155, 25–38 (2008).

    Article  Google Scholar 

  7. V. S. Kapitonov and A. G. Pronko, “The five-vertex model and boxed plane partitions,” J. Math. Sci., 158, 858–867 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. A. Berezin, The Method of Second Quantization [in Russian], 2nd ed. (aug.), Moscow (1986).

  9. R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q -Analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin (2010).

    Book  Google Scholar 

  10. D. S. Moak, “The q-analogue of the Laguerre polynomials,” J. Math. Anal. Appl., 81, 20–47 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Koekoek, “Generalizations of a q-analogue of Laguerre polynomials,” J. Approx. Theory, 69, 55–83 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. G. Moreno and E. M. García-Caballero, “q-Sobolev orthogonality of the q-Laguerre polynomials \(\{L_n^{(-N)}(\cdot;q)\}_{n=0}^\infty\) for positive integers N,” J. Korean Math. Soc., 48, 913–926 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Szegö, Orthogonal Polynomials, American Colloquium Publications, Vol. XXIII, 4th ed., Amer. Math. Soc., Providence, RI (1975).

  14. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kapitonov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 398, 2012, pp. 125–144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapitonov, V.S., Pronko, A.G. Weighted enumerations of boxed plane partitions and the inhomogeneous five-vertex model. J Math Sci 192, 70–80 (2013). https://doi.org/10.1007/s10958-013-1374-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1374-x

Keywords

Navigation